University of Music Karlsruhe
Institute for Music Informatics and Musicology

SYMBOLIC Music TYPESETTING
(The Engine)

Master Thesis

Amir TEYMURI

Primary Supervisor:
Dr. Jean BRESSON
Secondary Supervisor:
Daniel FUTTERER

December 4, 2020

Abstract

A new program for generating musical scores called Symbolic Music Typesetting has
been devised by the author. This program has been evolved primarily from a personal
dissatisfaction of the author in his working with different existing computer score-writers,
both in terms of results as well as of the program’s user-interface design. In this writing
some of the principal aspects of SMT's engine, which forms it’s graphical rendering kernel,
will be depicted accompanied by many examples, in the hope, that a basic understanding
of it’s potentiality and philosophy can be conveyed.

Declaration

I hereby declare that this thesis is my own work and effort. Where other sources of
information have been used, they have been acknowledged.

Karlsruhe,
December 4, 2020 Amir Teymuri

Contents

1 Introduction 1
1.1 Prelitfiisfies « = « o v v foe 5 5 0 8 % G0 o @ 6 Bes ¥R S 6 B E R @ R 8 1
1.1.1 Music Engraving e 1

1.1.2 The Workflow of the Master Engraver 1

1.1.3 Computer Music Typesetting Systems 2

1.2 'Why Another Score-WEter? .« « o v o 5% v 6w e w v v 6o s o s 4« oa & s 4 % 3

1.3 Current State of Development 3

2 SMT Object System 5
2.1 Customizing Rendering of a SMTOBJ Using SVG 5

- 2.2'Chase [Subelass of BMTOBIL v v v v 50w o v o wdi v 8 @ Gias 5 & 0% ¥ 4 14 & 9
2.3 Mtype (Subclass of Chase) 10
2.4 Composing Stick (Subclass of Chase) TR E A R G B 13

3 Definition of Rules 23
Bl TOteOdTIeloN. cw s o3 % By HE LS F W A S BB S E G P 8§ B 23
3.1.1 Rule Tables & Domains 23

3.1.2 Explaining The DEFRULE Macro« v v o v v v o0 i v o v v s 23
32D SHERE ¢ & s v om s s won s Ea e R s R e i E R G R R R G 27
3.2.1 Drawing Staff Lines on Stacked Sticks 27

3.2.2 Vertical Adjustment of Symbols - « v v s v ev v wnow v v m s v s s 32

3.2.3 Automating Vertical Placement of Symbols Based on their Pitch . . . 38

3:2.4 Addinig Stems to Noteheads . - . « o vov v wv van o wwa v 5w i 47
Bibliography 53

CHAPTER 1

Introduction

1.1 Preliminaries
1.1.1 Music Engraving

Until the early 1990s, most of the large music publishing houses were involving practiced and
experienced master craftsmen who did all the engraving work merely by hand. Although
the developement of computer systems for writing low-budget musical scores in the course
of the last 40 years has completely outpaced this unique art and craft and made it obsolete
by virtue of their comparatively low costs and higher speed of manufacturing printed music,
the beauty and the quality of the hand-engraved music scores of old masters still remains
unrivaled. Historically, before computers were in widespread use in music typesetting,
the main practical methods for the production of musical scores could roughly be divided
into the following categories: music engraving. auto-typography, by using transfers, by
using note-typewriters and by using stencils. As perhaps the most widespread music print
technique and the oldest craftsmanship of it’s kind, music engraving met fairly small
changes over centuries only in it’s fabrication of steel-stamps and precision-instruments for
the engraver. Although other experiments in the field of music typesetting could find their
place in the industry from time to time', music engraving could assert itself as the main
procedure in the production of high-quality musical print.

1.1.2 The Workflow of the Master Engraver

As perhaps the most influential of the music printing techniques. music engraving was
around for about 200 years until the late 20th century. The production of a single engraving
plate for a music of moderate complexity level, would often take a whole working day, and
basically took place in two stages: hammering of types (note-heads, stem-flags, accidentals,
rests, text etc.) into the plate and subsequently engraving all the remaining parts such
as stems, ledger lines, legato bow, beams etc.. But before the master engraver could
hammer the first symbol into his plate, a comprehensive work should be done, to divide
the manuscript into pages and lines in an optimal way, suited best to the content and
the character of the music being engraved. In the course of dividing the manuscript, the
number of bars on each line?, and the number of lines to be fitted into each page should
be investigated, whereas the convenient page-turning spots and the overall volume of the

1 For instance Johann Gottlob Immanuel Breitkopf’s invention of dissasembling note-heads, stems, staff-
lines. flags and other parts of music-notation into many different pieces, to mention only a prominent
example out of many.

Speaking here of rather traditional western music which almost always uses bars as it’s unit of division.

b

2 Chapter 1 Introduction

edition had to be taken into consideration. Hence, it was important for the success of
an edition, to settle the content of each page beforehand. The next stage, the division
of heights, consisted of a precise calculation of the gaps between the musical systems.
Although these spacings oftentimes would be quite varying, it was the artistry of the
master engraver, to simulate a visual consistency and to evoke a visual harmonic illusion
by means of optical adjustments. Only after this time-consuming preperations, could the
five staff-lines be engraved into the plate via the so-called rastrum.

1.1.3 Computer Music Typesetting Systems

The profession of music engraving was learned and handed on to next generations only
by doing and practicing it. It’s beauty and elegance resulted solely from the judgement
of the engraver, his craftsmanship and his experience. Little to no sources does exist
which would describe the finest case-related and the overall rules of engraving. These
of course make implementing a computer program, which could compete with the work
of a master engraver a non-trivial challenge! The computer programs which have been
developed for music notation fall into one of the two categories: 1- those with graphical
user-interfaces and 2- those who expect input from users in a textual form. These two

paradigms exhibit some substantial differences in the way they allow expressing music.

Although the first paradigm (also known as What You See Is What You Get; WYSIWYG)
presents a more intuitive interface, it offers less flexibility in terms of changing the behavior
of the system if needed or desirable. Organizing and managing data for bigger projects is

basically not left to user’s own discretion. Also non-physical storing of the resources (e.g.
on the cloud) which is a vital aspect in many fields of musical research, musicology etc.

when not happening in another text-based form (for instance in markup langauges and
alike) is mostly cumbersome. The other paradigm (which I call What You Read Is What
You Get or WYRIWYG, to keep up with the style of word composition of the previous
paradigm) could give more control (possibly down to the kernel of the system) for adjusting
or changing the behavior of the system. With WYRIWYG comes an important aspect with
which we are not confronted when only clicking on the mouse- or a midi-instrument-key for
inputing music (WYSIWYG). As the WYRIWYG paradigm bears some resemblence to a
programming environment (or a markup langauge'), it is inevitable for it’s design to take
the expressiveness of the language into account. As (text-based) computer systems (such
as WYRIWYG music notation software) grow in complexity, the importance of the level of
expressiveness the system offers, becomes more and more relevant. Also when it comes to
particular notation fields (e.g. percussion-notation and alike), almost all notation software
treat this sector as a special case which involves introducing new syntactic structures for
them. While legitimate to treat some already known special cases like percussion-notation,
ancient mensural-notation, world music, extended-techniques in contemporary music etc.,
there could potentially be an unlimited range of individual requests and needs, where the

users might want to construct and introduce their own notational concepts and systematics.

1 The music notation software LilyPond for instance, having an integrated scheme interpreter as interface
to it's parser/compiler toolchain, is a markup language with support for doing some programming tasks
in the scheme programming language.

G

QRERAES D0 Befl "AABERRANAEENIFINEERNTIROAGE 2o

duction

Pess Uf
ivision

e11s.
of the
Lusion

ald the

s only
Fement
s exist
These
e work
e been
aphical
bse two
music.
YG)
shavior
jects is
jes (e.g.
bey etc.
fes and
s What
EVIONs
justing
with
ey for
ce to a
o take
s (such
evel of
bmes to
pitware
ares for
ptation,
sic etc.,
ere the
Fmatics.

linterface
ng tasks

1.2 Why Another Score-Writer? 3

The next lines of this report shall give a preliminary understanding of some of the design
aspects and the philosophy of SMT.

1.2 Why Another Score-Writer?

SMT is a Common Lisp system for writing musical scores. Innovative ideas and complexity
of music notation in the works of composers of the last and current centuries have posed a
great challenge to digital notation systems in both technical as well as philosophical terms.
Different composers have conceived and implemented different notation systems for their
own work, partly quite distant from the established and conventional concepts we know
from the Common Western Music Notation; from graphical and spatial notations of the
members of the New York School or artfully rendered scores of George Crumb, attempts for
transferring electronic music to paper by Stockhausen, Xenakis and Ligeti to even music
not conceived for publication in form of printed material e.g. studies of Conlon Nancarrow
for mechanical piano or even improvisational music to only name a few. Although in most
cases composers, researchers and publishers snatch at the paradigmes of the Common
Western Music Notation. through it's modular and rule-based design, SMT promotes
re-thinking of notational concepts as well as conceiving new alternatives which might suit
better to certian types of music. The challenge posed to notation systems basically boil
down to the question whether different forms and types of music notation (including those
unknown to the authors of the systems!) are expressible in the system, hence is the system
extensible enough and whether it allows for defining and accommodating new notations
just as the established conventions of western music notation. Many music typesetting
svstems provide their users with some possibilities for extending the system’s behavior (e.g.
the ManuScript language for writing plug-ins in Sibelius or the Guile Scheme for further
interaction with the LilyPond’s parser-compiler toolchain), oftentimes these extensions
however can’'t go beyond what these systems already define and understand as music
notation (namely classical western music notation), which leads to the modifications the
user has to undertake in his/her notational concepts for them to fit within the scope of the
syvstem’s definition of music! SMT is also an attempt for compensating some shrotcomings
in this respect.

As SMT is still under active development, this thesis strives for giving an overview of
some of it's design aspects accompanied by some examples. Since this thesis describes
a work-in-progess, the author acknowledges also that some of the aspects of the engine
addressed in this report are subject to change in the future.

1.3 Current State of Development

The work on the SMT-engine and it’s central theme hitherto has been focused on achieving
a music notation system which is not only modifiable and extendible, but also definable.
Hence a relatively big part of the work until now has been dedicated to the developement
of it’s rule definition protocol, which should make that goal possible. Although the rule
protocol is not thoroughly implemented yet and requires many refactorings, it is on it’s way
to maturity so that it’s basic concepts can be introduced and presented through examples
in this writing. SMT is written in Common Lisp and relies heavily on it’'s Object System
CLOS). Although it might be subject to change in future work, the main way of modifying

4 Chapter 1 Introduction

SMT’s behavior at this moment is through direct communication and changing objects
and their slot values. Hence writing effective rules for SMT objects almost always involves
re-setting values of some of their slots and is thus a destructive act! Until now the following
classes have been implemented into the engine: the base abstract class SMTOBJ from which

every other class inherits, the abstract class CHASE which represents a frame (or a canvas,
or a surface) which embeds a graphical unit (a musical symbol or a COMPOSING-STICK),

the abstrace class MTYPE which inherits from the CHASE and represents a musical
symbol (a glyph) and some of it’s subclasses such as NOTE. NOTEHEAD. ACCIDENTAL
and REST, and the abstract class COMPOSING-STICK which plays the role of a container
for other objects, including instances of other COMPOSING-STICKS. The three variants
of the COMPOSING-STICK abstract class which are in the public interface of the engine
are called STACKED-COMPOSING-STICK, HORIZONTAL-COMPOSING-STICK and
VERTICAL-COMPOSING-STICK. The terminology and many of the concepts used here
in the design of the engine has been inspired by the Letter-press Print (though in a bit
modified form). These objects and their connections to the tools with the same name in
the letter-press printing are handled in more depth in the next chapter. SMT’s native
output format is the ubiquitous Scalable Vector Graphics (SVG). Many other conversions

of course (e.g. to PDF) or connecting the output with other XML family members (e.g.

embedding into HTML etc.) can easily take place from the generated SVG files.
The following chapters provide a more technical insight into the engine.

ion

jjects
plves
wing
"{Ch

nvas,

CK).

sical
AL

@ainer

ngine
and
here
a bit

ative

=1ons
(e.g.

——

CHAPTER 2

SMT Object System

At the top of SMT’s object system sits the class SMTOBJ. This base abstract class
guarantees that each object used in our score receives a unique id through which the engine
can keep track of all it’s attributes and actions and also watch the created objects in a
hash-table called *central-registry*'. Every SMTOBJ also has a list of ancestors which
is updated each time we add the object to the content list of other objects®. Ancestors affect
their descendants (most importantly) by means of movement and scaling; they cause all
their descendants to be displaced on the page by the same amount of vertical or horizontal
movement, and they cause all their descendants to be re-scaled by the same scaling factor.

2.1 Customizing Rendering of a SMTOBJ Using SVG

Each SMTOBJ possesses a list which contains all of the SVG elements associated with an
object and which will be rendered alongside the object. This list can be accessed via the
accessor function svglst of the object. Hence we can add our own SVG elements to this
list. As mentioned in the introduction, SMT comes with an integrated SVG system, which
we can use for using SVG elements alongside the ones generated by the engine®. There is a
convenience function for pushing SVG elements to the svglst of an object called packsvg!
which has the following syntax:

packsvg! object &rest svg-elements

and pushes the svg-elements to the object’s svglst. Before I demonstrate a simple
example of integrating SVG elements into a resulting image generated by the engine, I
would like to show a basic form of generating a single note. which we then decorate with
our own SVG elements.

A note object is an instance of the class note which is a subclass of the class stacked-
composing-stick (see the section 2.4 for more on composing sticks). As a subclass of
the composing stick class, a note can contain other elements (e.g. note-head. stem, flag
ete.) which are stored in the content list of a note object. Beside the attributes inherited
from the composing stick class, a note object has a :spn slot which designates the pitch
of the note as a dotted list of two elements: (pitch-name . pitch-octave) (see the

Having unique ids is important in (amongst other things) defining rules. More on this topic later!
Only a composing-stick has a content list and can hence contain other ohjects.

I will not discuss the SVG layer in this writing. For more on that. please refer to the Github repository
of SMT’s XML utility under https://github.com/SymbolicMusicTypesetting/xmlutils.git

(L

6 Chapter 2 SMT Object System

section 3.2.2 for more on SPN). A note has also a duration (specified with the :dur slot)
with a default value of 1/4, where 1/4 stands for a quarter note, 1/2 for a half note, 1
for a whole note and so forth. For each of the elements of a note which are contained in
it’s content list, there is an additional corresponding slot which allows us to create those
objects explicitely (e.g. for creating note-heads or flags or stems). For instance, although
the note-head of a note object is created implicitely by the engine based on the duration
we specify for the note, it is possible to create a different note-head object by initializing
the slot :head to an instance of the class notehead. In the following example the note and

the note-head objects are created by calls to the functions note and notehead respectively.

The first argument to the note function is the SPN dotted list, and the first argument
to the notehead function is a string designating the label of the glyph to be used for the
note-head instance (for more on note-heads please see the section 3.2.3):

CL-USER> (in-package #:smtngn)
#<PACKAGE "SMTNGN">

SMTNGN> (id (head (note '(c . 4) :head (notehead "s0" :id 'my-head))))
MY-HEAD

Note that for now other elements like the stems and the flags of the note are not implemented
yet, so that they are not going to appear in the following examples.

Let us now go back to experimenting with adding some SVG elements to the image of a
note:

(render (list (note '(f . 4) :duration 1/2 :toplevelp t)))

The code above will generate the following image:

Let us now add some circles to the image of the note-head:

(defun spiral (a b step-resolution step-count)
"Returns a list of coordinates for r=atb*theta stepping theta by
step-resolution."
(loop for theta
from 0 upto (* step-count step-resolution)
by step-resolution
for r = (+ a (* b theta))
for x = (* r (cos theta))
for y = (* r (sin theta))

[}

stem 2.1 Customizing Rendering of a SMTOBJ Using SVG 7

slot) collect (coms x y)))

e 1

d in :; Add SVG circles to the SVGLST of the note:
. (let ((f4 (note '(f . 4)

:duration 1/2

gh :toplevel

3 1toplevelp t))
'{On (colors '("red" "orange" "pink" "green"
Emne "blue" "black" "gray" "cyan")))
and (apply #'packsvg! f4

ely. (loop for pnt in (spiral .8 .8 .7112 100)
aent collect (svg:circle

the ;3 Circel X

(+ (car pnt) (left f4) (/ (width f4) 2))

. 33 Circle Y

(+ (cdr pnt) (top f4) (/ (height f4) 2))

;3 Circle Radius

1

;3 Circel Color

:stroke (nth (random (list-length colors)) colors)
;3 Circel Line Thickness

ated :stroke-width 10

' :fill "none")))

(render (list f4)))

of a
rE o
o ¢ - o}
")
o o
o
o o
o 0O
o)
o
o
o o]
o ~
o] : o]
© o
0
: o
e .
o o
O 7

As another example of customizing the output of the engine using it's SVG layer, let

8 Chapter 2 SMT Object System

us fill the right half of the frame of a mtype object (a clef) with a green rectangle (more
information about mtypes can be found in the section 2.3). For this, we again use the
packsvg! function which we described earlier!:

(let ((c (clef '(c . 4) :toplevelp t)))
(packsvg! c (svg:rect
;; Rectangle's x
(+ (left c) (/ (width c) 2))
;; Rectangle's y
(top)
;; Rectangle's Width
(/ (width c) 2)
;; Rectangle's Height
(height c)
;; Rectangle's Color
:fill "green" :fill-opacity .6))
(render (list c¢)))

which vields:

While the actions above are not explained in full depth, it should be obvious from the

examples that instructing the engine to render more complex SVG drawings is easily viable.

For the sake of brevity, I content myself with these small demonstrations on interacting
with the SVG-layer of the engine and refer to the online documentations of the project?
for more information.

Two other important slots of each SMTOBJ which will be handled in more depth in the
chapter about the rule protocol are domain and ruleids. The domain of an object tells

1 Note again that a call to packsvg! is destructive, since it changes the state of object’s svglst.
2 https://symbolicmusictypesetting.github.io/smtdoc/

2.2 Cha

the eng
for that
iterates
fypes of
found r

As of
implem
namely
implem

22 Ch
Let us!
PTESSOD

1 RO WULWEER - B B E =

TRELY

Va

4se the

System

{more

m the

in the
t tells

viable.

22 Chase (Subclass of SMTOBJ)) 9

he engine to look in the defined set of rules and sort out all rules which have been defined
‘or that domain'. Before the engine however goes on with applying rules to the object. it
erates over the list of rule-ids which are names of slots of an object, and compares the
‘upes of values of those slots with the type specifier of the sorted out rules. The in this way

und rules are then applied to the object (more about rules in the next chapter).

As of this writing not all of the concieved subclasses of the SMTOBJ abstract class are
anplemented yet, however the three basic classes of objects which I will address hereinafter,
namely the chase class, the mtype class and the composing-stick class are to a large extent

22 Chase (Subclass of SMTOBJ)

Let us start this section by the definition of the chase in it's letter-press context. letter-

resscommons® gives a good impression of what this tool is:

. a metal frame used to hold type in place while printing. usually on a platen press.
Tvpe or a base is locked up towards the center of the chase using furniture to position it
and quoins to apply pressure against the X and Y axis. Lock up is done on a composing
stone to assure that tvpe is level. Before quoins are tightened a planer is tapped gently
on the type surface to confirm the feet are flush against the stone, completely level.

Twvpically made of cast iron. the size of a chase matches a specific press. The measure-
ments, in inches, of the inside of the chase are also used to describe the press size. (So
an 8 x 12 CP uses a chase that measures & x 12 on the inside of the correct chase.)
Some chases, especially large ones, have handles at the top to assist the printer in both
transporting and placing the chase in position on the press. A spider chase is made for
locking up small forms in a large chase by providing a small frame with “legs” that
attach to the larger chase.

I The domain can be a keyword or one of the symbols stacked-composing-stick,
horizontal-composing-stick or vertical-composing-stick. The last three domains are used
internally by the engine and can be used for defining rules by one of the macros define-stacked-rule,
define-horizontal-rule or define-vertical-rule correspondingly.

2 https://letterpresscommons.com/general-tools-and-supplies/

10 Chapter 2 SMT Object System

Chases can also be useful with flatbed presses for a variety of situations. Composition
of complex forms can be created on a composing stone in a large chase, then brought
to the press before printing. Small chases are useful to create angled type in a flatbed
press, easily locked up with triangular cut furniture and magnets.

As in the letter-press print. SMT’s chase is also concieved as a frame for other objects.
Children of a chase inherit some of their properties from their parent. Some properties
(e.g. coordinates or dimensional properties) are affected by those of their parent chase.
For example changing the horizontal position of a chase on the page, will cause all the
descendants of the chase to be displaced horizontally in the same direction by the same
amount (of pixels) as well. This does not happen only if we have set the absolute position of
a descandant! Every chase object has the following 10 positional attributes: absx, absy,
x-offset, y-offset, x, y, left, right, top and bottom. Each chase in addition
possesses the 4 dimensional attributes width, height, x-scale and y-scale which
affect the dimensions of the chase. These methods are places, hence can be read from
and written to. From the mentioned posidim' attributes only absx, absy, x-offset,
y-offset, x-scaler and y-scaler can be set at object-creation time. They can as
well be modified at any later stages of object’s life-time before the rule-application time.
The remaining posidim attributes are computed and set after the object initialization,
based on the posidims of object’s parents (and possibly object’s own children in case of
composing-sticks).

Chases are printed on the score as filled rectangles by setting the : chase-visible-p slot
to true. This rectangle, is the smallest possible rectangle which includes all the graphics of
an object. The definition of this rectangle however is for mtypes and composing-sticks a
bit different and is illustrated in the following sections.

2.3 Mtype (Subclass of Chase)
A sort or type in the letter-press print is defined by Wikipedia? as:

... a piece of type representing a particular letter or symbol. cast from a matrix mold
and assembled with other sorts bearing additional letters into lines of type to make up
a form from which a page is printed.

1 From now on in this writing, I will refer to the 14 abovementioned positional-dimensional attributes of
a chase as the posidims.
2 https://en.wikipedia.org/wiki/Sort_(typesetting)

all the
the same
sition of
x, absy,
addition

lization,
i case of

le-p slot
aphics of
-sticks a

gtributes of

|

2.3 Mtype (Subclass of Chase) 11

Correspondingly, a mtype in SMT? represents a musical symbol (a glyph) such as a clef,
2 note-head and so on. Each mtype has a so-called Bounding Client Rectangle (BCR)
structure®, which describes the coordinates of the smallest rectangle framing the entire
svmbol shape. The BCR structure contains some of the original posidim values, which

riginate directly from the defined SVG-font without any scalings applied to them yet?.
We can see one such structure and it’s slots below for the alto clef:

SMTNGN> (ber (clef '(c . 4)))

#s(BC
‘X -2.6666718
'Y -503.4

:WIDTH 671.68335
:HEIGHT 1007.93335
:TOP -503.4

-RIGHT 669.01666
:BOTTOM 504.53336
-LEFT -2.6666718)

The slot values of the above BCR structure reveal some very important aspects about
e design of the glyph in question: the top edge of the glyph (which corresponds to it’s y

wrdinate) is almost the half of it’s height off the vertical origin (note that the original
position of this glyph is assumed to be at the top-left corner of the page, i.e. at (0 0)). The
same story is valid for the left edge (corresponding to the x coordinate of the structure)
which is off the horizontal origin to a small extent, namely -2.6666718 pixels. Let’s examine
some of these properties through the following image:

Mrvpe stands for movable type, a name modification to avoid name clash with the in SBCL locked
svymbol type.
- A term borrowed from a javascript method with the same name.
Anyv mtype object is subject to a top-level horizontal as well as vertical scaling by the system factor
12519834 which is controlled by the wuser factor initially set to be 1. The system-factor for top-level
scaling is dynamically obtained by (((4 * current-staff-space) / current-alto-clef-height) * user-factor).
This originates from the fact that the height of the stave in a certain rastral scale should be equal to
the height of the alto clef in that rastral-scale, which in turn is equal to 4 staff-spaces (H. Chlapik, Die

“raris des Notengraphikers, page 30).

12 Chapter 2 SMT Object System

Right Eﬂge

i

Left Edge

Bottom Edge

On the left side of the picture we see a red cross with a small circle in the middle of it. We
call this the marker of the object, which shows us the exact position of the object on the
page, being the center of the marker-circle where the two lines of the marker’s cut across
each other. The other four attributes are self-evident: on the vertical axis the left and the
right edges mark the left-most and the right-most borders of the symbol. Likewise the top
and the bottom edges visualize the clef’s top-most and bottom-most boundaries on the
horizontal axis. The BCR is then the rectangle in cyan color which encompasses the clef’s
glyph based on the four computed margins'. What might not be obvious at first sight
though, is the fact that the x coordinate of our symbol (i.e. it’s horizontal positioning
on the page) is not the same as it’s left edge! And despite the fact that in our example
it is already obvious that the y coordinate differs from the top edge thoroughly, it seems
appropriate to mention that the y and the top values differ also (albeit possibly marginally)
for most glyphs. The xy coordinates of a mtype are computed based on the positions
we declare explicitely for the object at object’s creation-time (e.g. by initializing :absx,
:absy, :x-offset or :y-offset slots), or implicitely through object’s parents. These
informations are stored in the x and y methods and should not be confused with the :x
.y slots of the BCR structure (which are practically duplicates of the :1eft :top slots
respectively)!

To see this difference and the actual xy values let us zoom into the marker's center-circle
of our alto clef:

1 In case of a mtype, the BCR and it’s chase designate the same rectangle. It is this BCR/CHASE
rectangle which is colored.

g 5 B

of it. We
t on the
it across
and the
> the top
s on the
the clef’s
rst sight
itioning
example
it seems
rginally)
positions
g :absx,
s. These
h the :x
top slots
Lﬁvr—(-ircle

IR /CHASE

2.4 Composing Stick (Subclass of Chase) 13

XY)

We can now see clearly that the left edge of the clef symbol is to a small extent (the

-2.6666718 pixels) far left than our actual x value. Although in this case this difference

s quite small and imperceptible, for further possibly more complex operations involving
ntvpes, it is vital to be conscious of this difference.
Note that mtypes build the smallest cell of visible SMT objects. Hence, they may not
a container for anv other objects. However since they inherit from the SMTOBJ class,
thev have a list where every SVG element needed for rendering the mtype on the page
= kept in. The content of this list can be inspected or extended by calling the accessor
wihods svglst or (setf svglst) respectively on a mtype object. Note that at the time
{ this writing the reasonable time for investigating the content of svglst is not at object
reation-time, since the engine needs more information about the potential parents of a
ntvpe for creating proper SVG elements. These information are lacking at the object

eation-time!.

24 Composing Stick (Subclass of Chase)
the letter-press print a composing stick is a device used to hold metal type let-
= while composing lines of type ready for letter-press printing. It is defined by
www.stbrigidpress.net? as:

. the tool that holds the pieces of type that are being set (or, "composed"). Usually
made of brass or steel, the composing stick is held in the non-dominant hand while the
tvpesetter lines up each desired letter. The stick is adjustable, according to how long
the line of type needs to be.

Sv setting the :toplevelp of an object to true we inform the engine that it is ready to be rendered in
s current state and hence gets the complete svglst immediately.
- BEttps://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-2

14 Chapter 2 SMT Object System

As in letter-press printing, SMT’s composing-sticks are conceptually tray-like tools used
to assemble pieces of mtype into larger units (of moments, lines and columns). In SMT
the concept of composing sticks has been broadened to encompass not only the possibility
of lining up symbols horizontally (as in the letter-press printing), but also vertically, as
well as piled up on top of eachother (stacked). Thus we have a comparatively small
amount of tools at our disposal which give us a wide range of arrangement possibilities
for organizing symbols into lines of symbols, columns made up of lines of symbols and
so forth! Composing-sticks are thus containers which can accommodate mtype objects,
but also other composing-sticks who probably contain other composing-sticks loaded with
mtypes, thus in the family-tree of a SMT score a composing-stick can take on the role of an
ancestor as well as a descendant of other composing-sticks at the same time! This implies
that many of the behaviors of composing-stick objects have to be defined recursively.

A composing-stick object has an initial rectangular frame (see the section on chase).
The height of this rectangle has been set to the height of the alto clef from the currently
in-use font family. This is because in the Western music notation, the height of the alto
clef is supposed to be exactly equal to the height of the staff system'. As composing sticks
have been concieved to accommodate other objects, many of their attributes (and their
visibility) is dependent on their contents (the value of the :content slot). A composing
stick with an empty :content list is an abstract frame with the only dimensional attributes
height, top and bottom initialized. Below we create a composing-stick of type stacked, using
the function stick by providing it the only required argument, namely the type of the
composing stick. Note that whenever the engine gets the instruction to render one or many
SMT objects, it assumes that the exact starting point position is included in the top-level
object. If we have not provided this information for a top-level object (which is done
explicitely by having initialized both :absx and :absy slots of the object to the starting
point we wish on the page), then the engine goes ahead and sets these two important
attributes to some reasonable default values for us (to be more precise, the :absx will be
set to the value of the constant variable +left-margin+ being 136.06299 pixels wide, and

1 Or in other words: the height of the staff system should be filled out by the vertical space of the alto
clef, which must exactly be equal to four staff-spaces in the used rastral measurement.

2.4 Composing Stick (Subclass of Chase) 15

the :absy will be set to the value of the constant variable +top-margin+ being 211.65355
pixels high). Every other computation of positions of the top-level object and all it's
descendants (by inheritance) takes place based on the absolute position of the root top-level
object. To avoid an error, we also declare our stacked stick to be the top-level element of
the score by setting it's :toplevel slot to t which causes the engine to take care of setting
the appropriate starting point for us:

SMTNGN> (defparameter *stacked-stickx (stick :stacked :toplevelp t))
STACKED-STICK=

Now when we render our composing-stick:

SMTNGN> (render (list *stacked-stick*))
NIL

we get no errors, which means that the rendering has been successfully terminated. Let
us now examine some of the properties of our object!:

SMTNGN> (list (absx *stacked-stickx) (absy *stacked-stick*))
(136.06299 211.65355)

SMTNGN> (list (x-offset *stacked-stick*) (y-offset *stacked-stickx*))
(0 0

SMTNGN> (list (x #*stacked-stick*) (y *stacked-stick#))

(136.06299 211.65355)

:absx and :absy have indeed been set to the default page margins. Every SMT object
has also the two complementary positional attributes: :x-offset and :y-offset which
in contrary to the absolute parameters are always initialized to zero. Most of the time we
use the above-mentioned properties at the object’s initialization time. Once the objects
are created, based on their standpoints in the hierarchy of their family-tree, they need an
appropriate computation of their actual places on the page. Note that whereas a specified
absolute coordinate point (i.e. :absx, :absy) will set the xy coordinate of the object to
the desired point disregarding of it’s ancestors, offsetting (i.e. via :x-offset, :y-offset)
will merely move the object to the left or right, top or bottom respectively from it’s current
standpoint by the given amount?. The x and y functions above give us always the exact
actual position of objects, disregarding their nested level inside of their family’s hierarchy
and positional values of their ancestors. Both of these reader-functions have a counterpart
writer-function (setf x) and (setf y) which enable us to change the actual position of
objects at any stage of their life-time. Since these functions provide us with the actual
information about positions we would want to know and take care of the computations

1 All of the numerical values returned by the engine are in pixels.
2 At the time of this writing, the unit of input is interpreted only as pixel.

16 Chapter 2 SMT Object System

necessary for it, we most of the time will be working with them.
Next we browse through the vertical dimensions of our composing stick:

SMTNGN> (1ist (height *stacked-stick*) (fixed-height *stacked-stickx*))
(28.422043 28.422049)

SMTNGN> (top *stacked-stick#)

197.45851

SMTNGN> (bottom *stacked-stick*)

225.88055

Beside the height attribute who's value is dynamic and can be changed', composing
sticks also have a constant-height named fixed-height which is the initial height of each
stick and corresponds to the height of the alto clef symbol as described earlier. We can
inquire the height of the alto clef and insure that our stick has the exact same initial height:

SMTNGN> (height (clef '(c . 4)))
28.422049

The top and bottom coordinates of our stick are retrieved also with the two reader
functions top and bottom. These have corresponding writer-functions as well: (setf top)
and (setf bottom). Before taking a look into the produced graphics, let us examine the
vertical coordinates better. We increment the y attribute of our stick object by 1 pixel:

SMTNGN> (incf (y *stacked-stick*))
212.65355

and as we might expect the other vertical coordinates are updated accordingly:

SMTNGN> (top *stacked-stick#)
198.45851

SMTNGN> (bottom *stacked-stickx)
226.88055

In accordance with the expectation that changing the coordinates shouldn’t have an
impact on the dimensions of an object. of course the height of our composing stick still
holds it’s old value:

SMTNGN> (height *stacked-stickk)
28.422043

1 Either explicitely by resetting it to some other values, or implicitely dependent on the positionings of
stick’s descendants inside of it’s borders.

2.4 Composing Stick (Subclass of Chase) 17

The reverse should logicaly be not the case:

SMTNGN> (incf (height *stacked-stick*))

29.422043

SMTNGN> (list (bottom *stacked-stick*) (top *stacked-stickx))
(227.88055 198.45851)

Changing the height of the stick moves it’s bottom edge. Later in this chapter we will
see that these actions will have a desired impact on all ancestors as well as descendants of
a composing stick in a recursive manner.

Let us now have a look at the produced SVG graphics and see what has been rendered!:

The only thing we can see is the marker of our object, which specifies it’s xy coordinate.
As we saw, although the object even has an abstract frame with corresponding coordinates
and dimensions, this frame is not visible? until the stick contains some other objects. To
be more precise, this is the case because without any content the width of our stick is
keeping it’s initial value of 0. If we modify it's width and re-render:

SMTNGN> (setf (width *stacked-stickx) 20)
20

SMTNGN> (render (list *stacked-stick*))
NIL

we can see the effect:

1 Note that for saving space, I have trimmed and printed here only the part of the SVG graphics which
contains our graphics and not the entire page.

Note that the visibility of objects’s chase is set to true by default only in the testing version of the
engine,

18 Chapter 2 SMT Object System

To see the behavior of composing sticks containing other objects we do the following
small experiment: we create a composing-stick (S1) which contains another composing
stick (S0) which itself accommodates a note-head object (N) and look at their right edges:

(let* ((n (notehead "s0" :id 'n))
(s0 (stick :stacked :chase-fill "green"
:id 's0
:content (list n)))
(s1 (stick :stacked :toplevelp t
:id 'si
:content (list s0))))
(render (list si1))
;3 Print all left edges
(print (mapcar #'left (list n s0 s1)))
;; Print all right edges
(print (mapcar #'right (list n s0 s1)))

; => (136.06299 136.06299 136.06299)
; => (148.49846 148.49846 148.49846)

Now we shift the left edge of the SO by 20 pixels before rendering:

2.4 Composing Stick (Subclass of Chase) 19

(let* ((n (notehead "s0" :id 'n))
(s0 (stick :stacked :chase-fill "green"
:id 's0
:content (list n)))
(s1 (stick :stacked :toplevelp t
:id 'si
:content (list s0))))
(incf (left s0) 20)
(render (list si))
;3 Print all left edges
(print (mapcar #'left (list n s0 s1)))
;3 Print all right edges
(print (mapcar #'right (list n sO s1)))

;3 => (156.06299 156.06299 136.06299)
y; => (168.49846 168.49846 168.49846)

As we can see, this causes the lefts of SO and it’s child N to be incremented, but doesn’t
touch the left of the root object S1. Meanwhile since S1’s right edge is dynamically updated
to be no less than the right-most edge of it’s contents, it is pushed alongside the other two
right edges by 20 pixels:

Now we shift the left edge of SO by the same amount, this time to the left:

(let* ((n (notehead "s0" :id 'n))
(s0 (stick :stacked :chase-fill "green"
:id 's0
:content (list n)))
(s1 (stick :stacked :toplevelp t
:id 's1
:content (list s0))))

(decf (left s0) 20)

(render (list si))

;5 Print all left edges

(print (mapcar #'left (list n sO s1)))

20 Chapter 2 SMT Object System

;; Print all right edges
(print (mapcar #'right (list n s0 s1)))
)

;3 => (116.06299 116.06299 116.06299)
;3 => (128.49846 128.49846 136.06299)

This time, while all the left edges are moved together with the left edge of S0, the right
edge of S1 is again set to it’s initial left which was computed as being either the left-most
of it’s contents or it’'s own z coordinate! This is because the right edge of a composing
stick will never become smaller than it’s own x coordinate:

Extending the x of N? leaves both lefts of it’s ancestors untouched, while it pushes their
right edges®:

(let* ((n (notehead "sO" :id 'm))
(s0 (stick :stacked :chase-fill "green"
:id 's0
:content (list n)))
(s1 (stick :stacked :toplevelp t
vid ‘sl
:content (list s0))))
(incf (x n) 20)
(render (list s1))
;3 Print all left edges
(print (mapcar #'left (list n s0 s1)))
;3 Print all right edges
(print (mapcar #'right (list n s0 s1)))
)

1 The left edge of N moves, because it is contained in SO and is subject to the movements of it’s parent
and the left edge of S1 moves, because it is updated to be no less than the left-most of it’s children!

2 Changing left and right edges of a mtype is an error!

3 Their original right edges where placed at 148.49846.

2.4 Composing Stick (Subclass of Chase) 21

13 => (156.06299 136.06299 136.06299)
;3 => (168.49846 168.49846 168.49846)

Pushing the x-coordinate of N to left shifts all the lefts by the same amount, but can
not move the right edges of it’s two ancestors beyond their own z coordinates:

(let* ((n (notehead "sO" :id 'n))
(s0 (stick :stacked :chase-fill "green"
:id 's0
:content (list mn)))
(s1 (stick :stacked :toplevelp t
iid sl
:content (list s0))))
(decf (x n) 20)
(render (list s1))
;; Print all left edges
(print (mapcar #'left (list n s0 s1)))
;; Print all right edges
(print (mapcar #'right (list n sO s1)))

;3 => (116.06299 116.06299 116.06299)
;3 => (128.49846 136.06299 136.06299)

22 Chapter 2 SMT Object System

Changing the width attribute of objects would accordingly affect their family tree on
the horizontal scale. On the vertical scale displacing and modifying the top. bottom,
v and height attributes of objects would change the vertical posidim attributes of their
descendants and their ancestors correspondingly. To not repeat similiar effects, I will
confine myself to the above demonstrations and would refer to the documentation of the
engine for further readings.

CHAPTER 3

Definition of Rules

3.1 Introduction

We begin examining some fundamental aspects of SMT’s rule protocol by going through
the definition a basic and simple rule. But before that, we need to get familiar with some
of the terminology used in the protocol.

3.1.1 Rule Tables & Domains

Rules are organized into the so-called rule-tables, which are themselves kept into a central
ruletable registry named *domain-registry*. This registry itself is a hash-table with
it’s keys being keywords associated with different rule-tables. In SMT’s jargon we call
these kevs domains. Before rendering any objects, the engine will look into a list of
already registered domains (the value of the variable *domain-registry*) for extracting
and applying the for the object defined rules. Hence, before we proceed to the actual
definition of our rule, we must make sure that the engine knows about the domain in
which we want to define our rule (note that each domain can contain more than one rule).
SMT comes with some pre-defined domains named after the common musical clefs, e.g.
:treble, :bass, :alto etc. Besides there are three pre-defined domains for composing
sticks: stacked, horizontal and vertical (more on defining rules for composing sticks later).
Although the domain we are going to use for our first rule (:treble) is already registered
by SMT, we assume that this is not the case and start off by informing the engine about
our domain. For this, we use the function register-ruletable and pass to it as it's single
argument the name of our domain:

(register-ruletable :treble)

This creates a new ruletable with the domain name :treble for us, and registers it into
the central domain registry. Trying to define a rule in an unkown domain is an error.
3.1.2 Explaining The DEFRULE Macro

Being certain that the engine now knows about our domain, we can carry on with the
actual definition of our rule. We use the keyword defrule for defining a new rule, which
has the following syntax:

defrule targets domain (&optional id (typespec t) (index 0)) lambda-list &body body

23

24 Chapter 3 Definition of Rules

We already know about the domain parameter, so lets proceed to the next parameter
list: (id typespec index)!. The id argument is a keyword designating the name of one
of the slots of an object, who's value must be of the same type as designated by typespec
for the application of our rule to take place. It is important to note that for checking
the types of object’s slot-values against typespec, SMT uses the type system of Common
Lisp, so that any valid Common Lisp- or user-defined types could be used as arguments
to the typespec parameter. To understand this part better, we continue by intoducing a
practical case and breaking it apart. When we create a SMT-object, we have to supply it
with a unique (under eq) id®. This id and it’s uniqueness will be very important to our
rule-definition protocol, so SMT makes sure that each object has a unique id by registering
each used id into a hash-table (called *object-registry*) upon initializing an object,
and will complain when an id is going to be used more than once. It also automatically
provides a unique id for our object. should we have forgotten to do so! Below we create a
clef object, a subclass of the mtype class, and supply it with the id *bass-clef:

(defparameter #*bass-clef* (clef :f :id 'bass-clef :domain :treble :ruleids

'(:id)))

This object has been specified to read from the :treble rule-table for the application of
rules to him. It also has a rule-ids list with one keyword in it: :id. This tells the engine
to look at the value of the slot :id in this object and to check it's value-type against the
typespec of rules in the :treble rule-table to locate the applicable rule. All SMT objects
have a list of applicable rule-ids which can be used in defining rules (as argument to the
id parameter) and as items in the ruleids slot of the object. To know what rule-ids are
permitted for each object we can look into it’s class’s list of applicable rule-ids. For the
class SMTOBJ we can read these ids® by:

(mapcar #'car *smtobj-applicable-rule-ids*)
=> (:ID :DOMAIN)

smtobj-applicable-rule-ids#
;3 => ((:ID #<STANDARD-GENERIC-FUNCTION SMTNGN::ID (1)>)
i (:DOMAIN #<STANDARD-GENERIC-FUNCTION SMTNGN::DOMAIN (1)>))

As we can see, *xsmtobj-applicable-rule-ids* is an alist where the key of each entry
is the name of a slot and the value of the entry is the slot’s reader function.
Let us now see the definition of a simple rule which would be applicable to our bass clef:

1 The first parameter targets is a list for storing fypes of objects for which the domain is being defined.
I will explain this parameter later.

Not to be confused with the id parameter of defrule!

The list shown here is not the complete final version.

[]

3.1 Introduction 25

(defrule (clef) :treble (:id (eql bass-clef) 0) (O
"Prints a message to the console, once the rule has been applied."
(print '(my first rule applied!)))

Here the targets parameter is set to the list ’ (clef). targets is a list which should
contain one or more class names of objects we want our rule to be applied to. Also the
parameter list (id typespec index) is bound to the arguments (:id (eql bass-clef)
0) respectively. When the engine is going to render our clef object into graphics, it first
reads the values of two slots of the object: the :ruleids and the :domain. A non-empty
ruleids list tells the engine that there are some rules to be applied to our object before
it is rendered. The engine then proceeds by calling up the value of the rule ids specified
in the ruleids list. It then retrieves the fitting rule with the correct type-specifier from
the :treble rule-table, and calls the rule’s closure function. In the above example, we are
restricting our type-specifier to be exactly the symbol *bass-clef. So the above rule is
applicable to any objects whose slot :id has been initialized to the symbol *bass-clef.

The next parameter list is the lambda-list, which offers access to the object in question
and it's ancestors. The first parameter of this list, if supplied, will be bound to the object
itself. Any subsequent parameters are then bound to the ancestors of the object, so that
the second parameter would refer to the object’s direct ancestor, the third to the direct
ancestor of the object’s direct ancestor an so forth. In our example, since we are not
going to work with any of the objects in the family tree of the object, we leave out this
lambda-list to remain empty. The next forms constitute the body of our rule. which will
be evaluated as an implicit progn at the rule-application time. Here we are only asking for
the list * (my first rule applied!) to be printed out to the console, once the rule has
been applied:

(render (list *bass-clef*) :draw nil)

;3 => (MY FIRST RULE APPLIED!)

Note that by default the parameter typespec is bound to the base type t, which means
if we hadn’t supplied a type-specifier argument for this parameter, our rule would be
applicable to any objects with a ruleids list of ’ (:id), no matter what type the value of
their :id slot would be.

Since the value of ruleids is a list, we might already have deduced that this list could
accommodate more than one rule-id, which is to say applying more than one rule to our
object. This is where the defrule’s index parameter comes in to play. Imagine we wanted to
apply a second rule to the object before it gets rendered, based on the value of it’s :domain
slot. In the following we define a new rule which will be applicable to all objects who's
:domains are eql to :treble. Notice here the index argument which is set to 1. which
requires the :domain rule id to appear at the second place (rule ids count is zero-based)
of clef’s :ruleids list. As long as these are the case, our rule will set the color of the clef
symbol to red:

26 Chapter 3 Definition of Rules

(defrule (clef) :treble (:domain (eql :treble) 1) (obj)
"Sets the color of the symbol to red, if the :DOMAIN of OBJ is EQL to :TREBLE."
(setf (mtype-fill obj) "red"))

Now upon re-rendering our clef object:

(render (list (clef '(f . 4)
:id 'bass-clef
:toplevelp t
:absx 100 :absy 100
:domain :treble
:ruleids '(:id :domain))))

our initial rule prints to the console:

;3 => (MY FIRST RULE APPLIED!)

while the following graphic has been rendered:

Just for the sake of better understanding, let us swap our rule id’s in the ruleids list of
the base-clef and see what happens:

(render (list (clef '(f . 4)
:id 'bass-clef
:toplevelp t
:absx 100 :absy 100
:domain :treble
:ruleids '(:domain :id))))

No rules defined for ruleid DOMAIN at ruleid-index 0 in domain TREBLE
[Condition of type SIMPLE-ERROR]

3.2 Composing Sticks 27

SMT will complain about the absence of our desired rule-id at the first position in our
ruleids list! Although the rendering process has been ceased due to the error, we can be

sure that the very same problem also holds true for the :id rule-id at the second position.

Hence, the order of rule-ids is important to allow for successive applications of rules to
affect their previous ones, whenever desirable.

3.2 Composing Sticks

There is basically nothing much special into the definition of rules for composing sticks
than pictured in the introductory rules above. The only new aspect we are going to handle
will be that we can reach out for the objects themselves and all of their ancestors and
every detailed information they carry with them. For this purpose we need to fill out the
lambda-list of our defrule macro with the corresponding parameter names. In the next
sub-section we will play on some of the redundancies found in the common western music
notation to exemplify how we can refer to the object’s family tree and maybe manipulate
their attributes via our rules. Here we will also introduce three new special rule-definition
macros for composing sticks, namely define-stacked-rule, define-horizontal-rule
and define-vertical-rule for defining rules for the stacked, horizontal and vertical
sticks respectively. As these macros are merely convenient forms for defining rules for
the particular rule-tables, apart from the name of the domain which is ommited', they
resemble in syntax the defrule macro:

define-stacked-rule targets (&optional id (typespec t) (index 0)) lambda-list &body body
define-horizontal-rule targets (&optional id (typespec t) (index 0)) lambda-list &body body
define-vertical-rule targets (&optional id (typespec t) (index 0)) lambda-list &body body

3.2.1 Drawing Staff Lines on Stacked Sticks

Since we will need staff lines for checking the pitches later, we start this section by
illustrating how to draw staff lines on a stacked composing stick. As SMT’s native output
is Scalable Vector Graphics, it is easy to instruct SMT’s engine to render our own SVG
elements within our score. Before we proceed to drawing the stave, let us recap some of the
properties of a stakced stick which would help us in better understanding of the definition
of our rule. Composing sticks are abstract containers for housing musical symbols (mtypes)
or even other composing sticks. They all initially have the shape of a rectangle with a
fixed-height which is equal to the height of the alto clef, following the tradition in music
notation that the height of the alto clef shall fill out the horizontal space of stave. An
important feature of sticks are their coordinates: the dimensional attributes of a stick are
subject to changes based on the dimensional attributes of their children. So for instance
having a treble clef in the content of the stick will increase it’s height to the height of
the treble clef. The stick’s elasiticy in this sense resembles it to a bounding rectangle
which permanently adjusts it's borders for including all it’s children. It is important to
comprehend that the posidims of a stick can change dynamically. This is definitely not

1 And which is inferred from the macro’s name.

28 Chapter 3 Definition of Rules

what we want for drawing stave. If we would rely on the height of a horizontal stick, which
would say contain a treble clef and an alto clef, and draw the lines of our staff evenly
spaced based on the height of the stick, the results will be not what we would expect to
be (e.g. the staff spaces between staff lines would follow the height of the stick, which
changes based on the height of it’s children). The comments in the code snippets below
explain my approach to draw the stave. Please note that since the SMT-engine is more
of a graphics programming toolkit rather than a firmly pre-defined score-writer, there
are in many occasions more than one possible approach to achieve the same results! To
show more, I will demonstrate different approaches to show some of the potential pitfalls
involved with working with coordinates.

Let us start off with the drawing of stave by abstracting our goal: we want to have the
height of our stick being divided into four equal staff-spaces, marked off by five staff-lines:

THE STAFF

5

4

Lines 3
2

1

Spaces

- N Wb

;33 Define the rule for Stacked Sticks
(define-stacked-rule (stacked-composing-sticks) (:id) (me)
"Generates five lines evenly distributed based on the vertical-space of the
stick ME."
;3 Divide the height of the stick into four equal staff-spac
(let ((space-height (/ (height me) 4)))
(loop
¢ Line indices: O; 1; 25 8; 4
:for line-idx :to 4
;; To obtain the vertical position of each line (it's Y) re-set the
;3 Y of the current line to be the amount of vertical-space
;3 passed from the TOP of the stick hitherto
:for line-y = (+ (* line-idx space-height) (top me))
;3 Push a line-element with it's X1 being the LEFT of the stick,
;; it's X2 being the LEFT + WIDTH of the stick and it's Y1 & Y2 as
computed above
:do (push (svg:line (left me) line-y (+ (left me) (width me)) line-y
:stroke-width 30
:stroke-linecap "butt"
:stroke "black")
(svglst me)))))

D

]

3

;;; Define two clefs (mtypes) as children to a horizontal stick

3.2 Composing Sticks 29

;3 (which would catch the above rule) and render the
i35 horizontal stick
(let* ((g (clef '(g . 4) :chase-visible-p nil
:marker-visible-p nil
:mtype-fill "red"))
(c (clef '(c . 4) :chase-visible-p nil
:mtype-fill "blue"
:marker-visible-p nil
:x-offset 30))
(s (stick :stacked
:toplevelp t
:ruleids '(:id)
:content (list g c))))
(render (list s)))

The result is five staff lines distributed evenly within the height of the stick as we
instructed the engine to do:

This is however not what we had intended. since the stick has modified it’s height to
fit the height of it’s highest of children (being the treble clef) and since we have set the
vertical origin of our lines to be the top of the stick (the rule line :for line-y = (+ (%
line-index space-height) (top me)) which will just evaluate to (top me) for the first
line with line-index = 0), the stave positions and dimensions come to be invalid'!
Instead of using the height of the stick which is a dynamic variable, we should use the
fixed height of the stick which is equal to the height of the alto clef and of which we can
be sure, that it never changes, no matter what the actual content of the stick would be.
This is the value of the fixed-height method, as mentioned above:)

1 If you have noticed the thickness of the outer-most staff lines which exceed the top- and bottom-most
edges of the treble clef, this is caused by the SVG line element, which grows in width from it's center off
(the xy coordinate of the line) in both directions. For more information about this, consult the SVG
specification.

30 Chapter 3 Definition of Rules

;;; Define the rule for stacked sticks
(define-stacked-rule (stacked-composing-sticks) (:id) (me)
"Generates five lines evenly distributed based on the vertical-space of the
stick."
;; Replace the dynamic HEIGHT with the FIXED-HEIGHT
(let ((space-height (/ (fixed-height me) 4)))
(loop
:for line-idx :to 4
:for line-y = (+ (* line-idx space-height) (top me))
:do (push (svg:line (left me) line-y (+ (left me) (width me)) line-y
:stroke-width 30
:stroke-linecap "butt"
:stroke "black")
(svglst me)))))

And when we re-render every thing:

We still have a problem with the onset of staff lines, although the staff spaces and the
overall height of the staff are correct now. To adjust our rule to work, we must realize that
the onset of our staff lines can not be set to the top edge of our composing stick, since
this is also subject to change (here it is set to the top edge of the treble clef), but the y
attribute! The y attribute is defined to be the center of the fixed-height of a stick.

(define-stacked-rule (stacked-composing-sticks) (:id) (me)
"Generates five lines evenly distributed based on the vertical-space of the
stick."
(let ((space-height (/ (fixed-height me) 4)))
(loop
;3 Build the 5 line indices around 0
:for line-idx :from -2 :to 2
;; Proceed by adding the accumulated vertical space
;; to the Y coordinate of the stick
:for line-y = (+ (* line-idx space-height) (y me))
:do (push (svg:line (left me) line-y (+ (left me) (width me)) line-y

3.2 Composing Sticks 31

:stroke-width 30

:stroke-linecap "butt"

:stroke "black")
(svglst me)))))

Now when we render our stick, we should see the desired behavior:

Note that in the above case instead of computing the staff space!, we could as well have
used the variable *staff-spacex* which has the same value:

SMTNGN> (let ((h (stick :stacked)))
(= *staff-space* (/ (fixed-height h) 4)))
T

staff-space has been computed as described by Chlapik? as the rastral number
2. We could retrieve other rastral numbers as described by Chlapik using the function
get-staff-space which has a single parameter for specifying the rastral number (between
2 and) and returns the corresponding staff space in pixels:

SMTNGN> (dotimes (i 7)
(format t "~&Rastral Nr. ~D: ~D Pixels"
(+1i2)
(get-staff-space (+ i 2))))

Rastral Nr. 2: 7.105512 Pixels
Rastral Nr. 3: 6.633071 Pixels
Rastral Nr. 4: 6.0472445 Pixels
Rastral Nr. 5: 5.790236 Pixels
Rastral Nr. 6: 5.2913384 Pixels
Rastral Nr. 7: 4.497638 Pixels

1 Ie. the vertical space between stafl’s lines.
2 H. Chlapik, Die Prazis des Notengraphikers; Das Liniensystem (Rastral), page 32

32 Chapter 3 Definition of Rules

Rastral Nr. 8: 3.855118 Pixels
NIL

Although we can any time use any values as staff-space which suit our needs best, it is
advisable for consistency reasons to reset the value of the variable *staff-space* whenever
possible, for this variable is used system-wide for doing some of the computations which
are strictly dependent on staff spaces, such as vertical displacement of noteheads based on
their pitches which happens in staff-space units in system-defined rules.

Let us now remove all the annoying extras from the image and look at our stave again:

(let* ((g (clef '(g . 4) :chase-visible-p nil
:marker-visible-p nil))
(c (clef '(c . 4) :chase-visible-p nil
:marker-visible-p nil
:x-offset 30))
(b (stick :stacked
:marker-visible-p nil
:chase-visible-p nil
:toplevelp t
:ruleids '(:id)
:content (list g ¢))))
(render (1list h)))

3.2.2 Vertical Adjustment of Symbols

There still is problem with the vertical position of our treble clef, which is placed wrongly
on the middle line (the line with the line-index 0, which is at the same time the y
coordinate of our stick)! This is because the treble clef’s glyph has been designed in such a

3.2 Composing Sticks 33

way, to have it’s y coordinate at approximately it’s bottom third!. This is the point which
is used to move the glyph in the vertical direction.

To solve this problem, let’s first have another look at the surface of our composing stick,
the position of it’s marker and the values of it’s fixed vertical properties which we highlight
by an orange rectangle. To draw this rectangle we also introduce a new member of the
vertical fixed coordinates family of a composing stick. namely the fixed-top method:

(let* ((g (clef '(g . 4) :chase-visible-p nil
:marker-visible-p t))
(c (clef '(c . 4) :chase-visible-p nil
:marker-visible-p t
:x-offset 30))

(h (stick :horizontal
:marker-visible-p t
:chase-visible-p t
:toplevelp t
:ruleids '(:id)

:content (list g c))))
(packsvg! h (svg:rect
;3 X of rectangle
(left h)
;3 Y of rectangle
(fixed-top h)
;3 Width of rectangle
(width h)
;; Height of rectangle
(fixed-height h)
;35 Color of rectangle
:fill "orange" :fill-opacity .5))
(render (list h)))

We see that these musical joint-points (i.e. the centers of the markers) of both clefs have

1 The left side of the lower half of clef’s bowl, or where it's marker is drawn.

34 Chapter 3 Definition of Rules

been vertically placed in the middle of the fixed-height of our composing stick, which we
could express in terms of staff spaces, as 2/4 of it’s fixed height. Now the correct position
for the treble clef is on the second bottom line, or, again expressed in terms of staff spaces,
3/4 of composing stick’s fixed height counted from top, which implies that we only should
increment the y attribute of the treble clef by 1/4 of the composing stick’s fixed height.
Implementing this as a small rule for the treble clef is easy:

;33 This rule will apply to any mtype object, who's value of the

- :spn slot is of the same type as '(CONS (EQL G) UNSIGNED-BYTE)

(defrule (clef) :treble (:spn (cons (eql g) unsigned-byte)) (me parent)
(incf (y me) (x 1/4 (fixed-height parent))))

: And render every thing
(let* ((g (clef '(g . 4) :chase-visible-p nil
Important! Do not forget to tell the engine that
;5 we have a rule to be applied to this object.
:ruleids '(:spn) :domain :treble
:marker-visible-p t))
(c (clef '(c . 4) :chase-visible-p nil
:marker-visible-p t
:x-offset 30))
(h (stick :horizontal
:marker-visible-p t
:chase-visible-p t
:toplevelp t
:ruleids '(:id)
:content (list g c))))
(packsvg! h (svg:rect
;3 X of rectangle
(left h)
;3 Y of rectangle
(fixed-top h)
;3 Width of rectangle
(width h)
;; Height of rectangle
(fixed-height h)
;3 Color of rectangle
:fill "orange" :fill-opacity .5))
(render (list h)))

And we obtain:

3.2 Composing Sticks 35

There still exists an ambiguity about the :spn rule-id of our defined rule above: what
is the :spn slot? Each clef object, being an instance of the class pitched-mtype has to
be initialized with a so-called Scientific Pitch Notation (spn) slot, which designates the
pitch of the pitched-mtype object in the form of a dotted list where the first element of the
list is a symbol designating the name of the pitch, and the second element of the list is a
non-negative number designating the octave of the pitch!, e.g. > (C . 4) is equal to the C
of the fourth octave (the middle C on the piano). The first argument to any clef function
should be such a dotted-list and can be fetched from the constructed object by calling the
Spn accessor on it:

SMTNGN> (spn (clef '(g . 4)))
G . 4

In our rule above we are specifying that the rule should be applicable to all objects with
a spn-name eql to the symbol g and some non-negative spn-octave. However, we have been
ignoring the octave information of the :spn slot, since the only information we needed to
decide about the vertical positioning of the treble clef was it’s name, thus a procedure like
the following:

1 For more on spn visit https://en.wikipedia.org/wiki/Scientific_pitch_notation.

36 Chapter 3 Definition of Rules

(let* (
;3 Increment the octave of clef's spn
(g (clef '(g . 5) :chase-visible-p nil
:ruleids '(:spn) :domain :treble
:marker-visible-p t))
(c (clef '(c . 4) :chase-visible-p nil
:marker-visible-p t
:x-offset 30))
(s (stick :stacked
:marker-visible-p t
:chase-visible-p t
:toplevelp t
:ruleids '(:id)
:content (list g c))))
(packsvg! s (svg:rect (left s) (fixed-top s)
(width s) (fixed-height s)
:fill "orange" :fill-opacity .5))
(render (list s)))

does result in exactly the same outcome as before! Although it might not make very
much sense in musical terms, for the sake of demonstration we can modify our rule to take
the octave of clef’s SPN into play, so that different spn octaves would result in correct
vertical displacement of our treble clef:

(defrule (clef) :treble (:spn (cons (eql g) unsigned-byte)) (me parent)
(let ((octave (cdr (spn me))))
;; First step: move Y by 1/4 of the FIXED-HEIGHT towards
;; bottom of the page
(incf (y me) (* 1/4 (fixed-height parent)))
;; Second step: displace Y by 7/8 of the FIXED-HEIGHT
;; to the direction of the OCTAVE
(incf (y me) (* (- 4 octave) 7/8 (fixed-height parent)))))

Since our starting point here is the fourth octave, we are transforming the octave
information of clef’s spn into a vactor of vertical displacement by subtracting 4 (our original
octave) from the octave number of the spn. This vector is then multiplied by the vertical
space equal to one octave, namely 7/8 of staff’s height (read stick’s fixed-height). Below
we can assure ourselves of the amount of vertical staff spaces equal to one octave:

3.2 Composing Sticks 37

Now changing the octave of the treble clef:

(let* (
;3 Increment the octave of clef's spn
(g (clef '(g . 5) :chase-visible-p nil
:ruleids '(:spn) :domain :treble
:marker-visible-p t))
(c (clef '(c . 4) :chase-visible-p nil
:marker-visible-p t
:x-offset 30))
(s (stick :stacked
:marker-visible-p t
:chase-visible-p t
:toplevelp t
:ruleids '(:id)
:content (list g ¢))))
(packsvg! s (svg:rect (left s) (fixed-top s)
(width s) (fixed-height s)
:fil1l "orange" :fill-opacity .5))
(render (list s)))

results in:

38 Chapter 3 Definition of Rules

Thus we have systemized the octavation for our treble clef too. As said before, we might
not need automating octavations for working with clefs in common Western music notation,
but the concept of such automation will serve us well when we shortly define rules for
vertical positioning of noteheads and accidentals.

Although the last version of our rule does the job, just for the sake of showcase, we
could likewise have the y of the treble clef setfed to be the bottom 1/4 of the stick’s fixed
height, and then displaced by the octave vector:

;33 This will do exactly the same thing as the previous version of the rule:
(defrule (clef) :treble (:spn (cons (eql g) unsigned-byte)) (me parent)
(let ((octave (cdr (spn me))))
(setf (y me)
(+
Move the Y from the BOTTOM edge one staff space upwards

(- (fixed-bottom parent) *staff-space*)

;; Displace Y in the direction of the OCTAVE vector

(x (= 4 octave) 7/8 (fixed-height parent))))))

Please note that having a :spn slot for a clef object has been a design decision. to ease
positioning of clefs on any desired place on a staff!.

3.2.3 Automating Vertical Placement of Symbols Based on their Pitch

In the realm of western classical music, the natural use of scientific pitch notation is of
course for notes and accidentals, which I will address in this section briefly. Note that
at the time of this writing notes haven’t been implemented thoroughly yet?, so that for
this section, I will focus on working with their pitch and note-head components, which
are in any case adequate for our intention for demonstrating the automation of vertical
positioning of note-heads on the staff. based on their scientific pitch notaion.

Let us start with the very basics! Each time we create a note object, we are implicitely
creating a note-head object too. Usually the decision of choosing the appropriate note-head
glyph is left to the engine and happens based on the value of the note’s duration slot. We
can however easily instruct the engine to go with the note-head of our choice and thus
neglecting the duration for this matter®, but before that, since we are going to deal with
note-heads a quick excursion on them shall be helpful.

Note-heads are object’s on their own right, descendants of the mtype class which we
can create using the function notehead, which has a single positional parameter label
and (like other functions for creating musical symbols) any number of appropriate keyword
parameters for initializing an mtype object:

1 And also to be able to let the octave-displacements to be systemized via rules, as depicted above.
I.e. composed from all their different components note-heads, stems, flags and beams.

3 Notice that the value of the :duration slot is still used e.g. for computing the amount of horizontal
space after the note’s note-head.

3.2 Composing Sticks 39

SMTNGN> (notehead "s0")
#<NOTEHEAD {1001F81883}>

The argument to the label parameter should be a string which designates the name of a
glyph'.

We can throw a glance at all® valid labels for note-heads by calling the function glyph-
labels which expects the class of a glyph-name as it’s positional argument:

SMTNGN> (glyph-labels "noteheads")

("uM2" "dM2" "sM1" "sMidouble" "sO" "s1" "s2" "sOdiamond" "sldiamond"
"s2diamond" "sOtriangle" "dltriangle" "ultriangle" "u2triangle" "d2triangle"
"sOslash" "slslash" "s2slash" "sOcross" "slcross" "s2cross" "s2xcircle" "sOdo"
"dido" "uldo" "d2do" "u2do" "sOdoThin" "didoThin" "uldoThin" "d2doThin"
"u2doThin" "sOre" "ulre" "dlre" "u2re" "d2re" "sOreThin" "ulreThin" "direThin"
"u2reThin" "d2reThin" "sOmi" "simi" "s2mi" "sOmiMirror" "simiMirror"
"s2miMirror" "sOmiThin" "simiThin" "s2miThin" "u0fa" "dOfa" "uilfa" "difa" "u2fa"
"d2fa" "uOfaThin" "dOfaThin" "ulfaThin" "difaThin" "u2faThin" "d2faThin" "sOsol"
"slsol" "s2s0l" "s0la" "sila" "s2la" "s0laThin" "s1laThin" "s2laThin" "sO0ti"
altit tditi? Yu2ti" “d2+i" "aOtiThin" “"ultiThin" "d1tiThin" “a2tiThia"
"d2tiThin" "uOdoFunk" "dOdoFunk" "uldoFunk" "didoFunk" "u2doFunk" "d2doFunk"
"u0reFunk" "dOreFunk" "ulreFunk" "dlreFunk" "uZreFunk" "d2reFunk" "uOmiFunk"
"dOmiFunk" "ulmiFunk" "dimiFunk" "s2miFunk" "uOfaFunk" "dOfaFunk" "ulfaFunk"
"difaFunk" "u2faFunk" "d2faFunk" "sOsolFunk" "slsolFunk" "s2solFunk" "sOlaFunk"
"s1laFunk" "s2laFunk" "uOtiFunk" "dOtiFunk" "ultiFunk" "ditiFunk" "u2tiFunk"
"d2tiFunk" "sOdoWalker" "uldoWalker" "dldoWalker" "u2doWalker" "d2doWalker"
"sOreWalker" "ulreWalker" "dlreWalker" "u2reWalker" "d2reWalker" "sOmiWalker"
"simiWalker" "s2miWalker" "sOfaWalker" "ulfaWalker" "difaWalker" "u2faWalker"
"d2faWalker" "sOlaWalker" "sllaWalker" "s2laWalker" "sOtiWalker" "ultiWalker"
"ditiWalker" "u2tiWalker" "d2tiWalker")

The second optional argument to glyph-labels is family, which specifies the name of
the font-family we want to retrieve the labels from, and which by default is bound to the
variable %glyph-family’:

SMTNGN> %glyph-family?
:HAYDN-11

When we create a note by calling the function note, the musical symbol to be used as
the note-head component is decided on based on the duration of the note (the keyword
argument :duration to the note function, the first positional argument is a SPN designator
as described earlier in the section 3.2.2):

SMTNGN> (render (list (note '(c . 4) :duration 1/4 :toplevelp t)))

1 A glyph name is string of the form "class.label", where the class specifies the category of the glyph
e.g. noteheads, clefs, accidentals etc., and the label designates one of the defined lables in that category.

2 Making usage of user-defined musical symbols alongside the system-defined ones possible, is not
implemented yet. but is planned for the future.

40 Chapter 3 Definition of Rules

NIL

_+

SMTNGN> (render (list (mote '(c . 4) :duration 1/2 :toplevelp t)))
NIL

| -

SMINGN> (render (list (nmote '(c . 4) :duration 1 :toplevelp t)))
NIL

3.2 Composing Sticks 41

We could also give the note function our desired note-head explicitly, which would then
take priority over it’s :duration, if provided. Below. although our note object has a
duration of a quarter note, it’s note-head will be the object we explicitly create:

SMTNGN> (render (list (note '(c . 4)
:toplevelp t
:head (notehead "s0")
:duration 1/4)))

NIL

In the picture above, we can see two rectangles: the small pink rectangle surrounding
the note-head, and the bigger rectangle which includes the note-head and it’s bounding
rectangle. If we have noticed (perhaps with suspicion!) that the bigger rectangle has
approximately the height of the alto clef, it is because a note object is a recognizable subtype
and an example of an internal usage of the stacked-composing-stick. A note is thus in
principle a container for it’s various components:

SMTNGN> (content (note '(c . 4) :duration 1))
(#<NOTEHEAD {1003A62583}>)

SMTNGN> (subtypep (type-of (note '(c . 4) :duration 1)) 'stacked-composing-stick)
T
T

Let us now return to defining our rule to make the pitch of a note impact it’s vertical
position on the staff. We can approach this in two different ways; either by defining a rule
for the note-head part of the note to find it's position on the surface of it’s parent (being
the note object), or by instructing the note object itself to place it’s child (the note-head)
on the correct position. Either way, we need access to the vertical dimension of the stacked
stick for classifying and associating pitches with it. In the following, I will demonstrate
both of the mentioned approaches.

The computations for recognizing pitch can happen basically the same way as we already
did for the treble clef in the previous section. There is though one enhancement here,
namely we are specifying that the name part (the car) of the spn dotted list could be any

42 Chapter 3 Definition of Rules

symbol instead of a specific one, and based on that name we decide the correct amount of
*staff-spacex for shifting the y of our note-head. Thus we can cover the diatonic scale
of not only the fourth octave, but for any other possible octave as well. We will see the
results of this rule in the next pages.

(defrule (notehead) :treble (:spn (cons symbol unsigned-byte)) (me parent)
"Assigns correct vertical positions to note-heads,
based on their pitch-name and their octave."
(let ((pitch-name (car (spn me)))
(octave (cdr (spn me))))
(setf (y me)
(+ (- (fixed-bottom parent)
(case pitch-name
(c (- *staff-spacex))
(d (- (% .5 xstaff-spacex)))
(e 0)
(f (* .5 *staff-space*))
(g *staff-spacex)
(a (* 1.5 *staff-spacex))
(b (* 2 #staff-spacex))))
(* (- 4 octave) 7/8 (fixed-height parent))))))

Notice again, that here we are adding the symbol notehead to the list of target types of
this rule. '

Before we go on to the rendering part, I would like to (re)define the rule for drawing
staff lines to the background surface of each note':

;3 Add five staff lines to the SVGLST of a stacked stick
;33 to be drawn by the engine:
(define-stacked-rule (stacked-composing-stick) (:id) (me)
(loop
:for line-idx :from -2 :to 2
:for line-y = (+ (% line-idx *staff-space*) (y me))
:do (push (svg:line (left me) line-y (+ (left me) (width me)) line-y
:stroke-width *staff-line-thicknessx*
:stroke-linecap "butt"
:stroke "black")
(svglst me))))

Now we have defined all rules we need for pitches to be placed on the correct vertical
positions. Before we render some notes with the rules applied to them, let us first consider
the notes without the application of the above rules:

1 Notice also that deciding about where the staff lines should be drawn is to some extent arbitrary. 1
could as well be drawing lines directly on the note objects (which are stacked sticks themselves), but I
prefer to create extra sticks for this purpose, so that the backgroung surface and the note object itself
remain independent of each other!

3.2 Composing Sticks 43

(render
(list
;3 This horizontal stick will line up all it's children
;; horizontally based on their width's.
(stick :horizontal
:toplevelp t
:content
(list
;; First note surface, where the staff lines will be drawn
(stick :stacked
:content
(list (note '(g . 5)
:duration 1)))
;3 Second note surface
(stick :stacked
:content
(list (note '(g . 4)
:duration 0.5)))
;3 Third note surface
(stick :stacked
:content
(1ist (note '(g . 3)
tduration 0.25)))))))

In the resulting picture:

we learn about a central feature of horizontal composing sticks: they lock up their direct
descendants horizontally by placing the left edge of every next child to the right edge of
it’s previous sibling!:

(define-horizontal-rule (horizontal-composing-stick) (:id) (me)
(dolist (child (content me))
(format t "~&~A Left: ~D, Right: ~D"
(id child)

1 Similiar line-up process is applied to vertical sticks as well, which we are not going to discuss in this
writing.

44 Chapter 3 Definition of Rules

(left child)
(right child))))

Now by setting the slot :ruleids to ’(:id) for our horizontal stick and re-rendering we
can observe in the console that the line-up indeed happens:

SMTOBJ1255 Left: 141.06299, Right: 153.49846
SMTOBJ1258 Left: 153.49846, Right: 162.8885
SMTOBJ1261 Left: 162.8885, Right: 171.348

Apparently the line-up depends solely on the order in which we have listed the content of
the horizontal stick. Although it is possible to scramble this horizontal line via rules', we
should mostly rely on the order of objects computed by the horizontal and vertical sticks?.

Now, first thing we want to see, are the staff lines drawn on each note background (the
stacked sticks). This is easily done by specifying the correct rule-id for sticks we want our
staff-line rule to be applied to:

(render
(list
(stick :horizontal
:toplevelp t
:content
(list
(stick :stacked
;3 Rule-id tells the engine to apply the staff-line rule
:: to this surface
:ruleids '(:id)
:content
(list (note '(g . 5)
:duration 1)))
(stick :stacked
iruleids '(:id)
:content
(list (note '(g . 4)
:duration 0.5)))
(stick :stacked
:ruleids '(:id)
:content
(list (note '(g . 3)
:duration 0.25)))))))

1 Rules are applied to objects after all necessary line-ups have taken place. This keeps the rule protocol
at the top of the modification facilities for controling the behavior of SMT.
2 In future versions of SMT, these computations will happen based on spacing considerations.

3.2 Composing Sticks 45

Adding the rule-id for vertical positioning of notes needs some more explanations. Note
that in the above sequence of notes, note-heads are being created implicitely via the
supplied durations, which makes accessing them cumbersome (e.g. to supply them with the
correct rule-id and the correct domain)!'. There is a workaround for this: each composing
stick can specify a pre-processor which will be evaluated before any other steps in the
life-time of an object takes place. The pre-processors are evaluated recursively on all
descendants of a stick and are boiled down to functions of one argument (the descendant).
We supply such a pre-processor by setting the slot :preproc to a call to the preproc
macro with the following syntax: '

preproc var &body cases

with var parameter being the variable name we want to give a descendant object, and
which we can refer to in the cases of the pre-processor. The cases are lists in the shape
of (test form-1 form-2 ... form-N). form-1 ... form-N are evaluated only when
the test part evaluates to true. We have thus the possiblity of specifying different pre-
processors for the descendants of a composing stick. In the pre-processor below which we
supply for the first note, we check whether a child object (here bound to the variable x) is
of type note-head, and if so we set it’s rule-ids and domain so that the object is responsive
to our rule:

(render
(list
(stick :horizontal
:toplevelp t
:content
(list
(stick :stacked

1 We could of course have defined each note-head ourselves (by specifying the :head slot for each note
object) to circumvent this problem.

46 Chapter 3 Definition of Rules

:ruleids '(:id)
:content
(list (note '(g . 5)
:duration 1
;; Specifying a pre-processor to change the
;3 rule-ids and the domain of a NOTEHEAD for
;3 catching the rule
{preproc
(preproc x
((typep x 'notehead)
(setf (ruleids x) '(:spn)
(domain x) :treble))))))
(stick :stacked
:ruleids '(:id)
:content
(list (note '(g . 4)
:duration 0.5)))
(stick :stacked
:ruleids '(:id)
:content
(list (note '(g . 3)
tduration 0.25)))))))

Since however we want the same pre-processing to be applied to all (implicitely created
note-heads, and since pre-processors are called recursively on all descendants of a stick
irrespective of their nesting level, we can supply the same pre-processor to the top mos
horizontal stick, which saves us supplying the same code for every note object. Anothe
repeated action above, which we can factor out with the aid of a pre-processor is settin
the ruleids slots of the stacked sticks:

(render

3.2 Composing Sticks 47

(list
(stick :horizontal
:preproc (preproc x
i+ Recognising pitches in note-heads
((typep x 'notehead)
(setf (ruleids x) '(:spn)
(domain x) :treble))
;3 Drawing staff lines on stacked sticks
i3 (will be applied to ANY of the descendants
;3 which are STACKED-COMPOSING-STICKs)
((eq (class-name (class-of x)) 'stacked-composing-stick)
(setf (ruleids x) '(:id))))
:toplevelp t
:content
(list
(stick :stacked
:content
(list (note '(g . 5)
:duration 1)))
(stick :stacked
:content
(l1ist (note '(g . 4)
:duration 0.5)))
(stick :stacked

:content (list (mote '(g . 3) :duration 0.25)))))))

3.2.4 Adding Stems to Noteheads

As a closing example for this chapter, I would like to add some stems to the notes (when
they need one).

To accomplish this, and since I want the same stem-drawing rule to be applied to all

48 Chapter 3 Definition of Rules

note objects (for brevity) I will define an id-less rule'. In the following definition I set the
vertical onsetting point of the stem (the stem-onset binding below) to be approrimately
at the center of the note-head?, although with small modifications (the value of dy below)
to prevent the note-head ends of the stem being visible beyond the note-head. I also use
the standard length of a stem which is stored in the variable *octave-space*”:

(defparameter *octave-space* (* 3.5 *staff-spacex*))

The decision about the direction of stem is made by a call to the following function*:

(defun down-stem-p (spn)
"Decides about the direction of a stem,
based on the pitch-name and the octave of spn."
(let ((pitch-name (car spn))
(octave (cdr spn)))
(or (>= octave 5)
;; The stem direction of the '(b . 4) should
;; be determined based on the stem directions before
;; and after in a real solution, hence the whole rule
;; for giving stems their directions should be moved to
;; a superior container of notes (e.g. a horizontal stick]
;3 which has an overview to whole sequence of notes. Th
;; exceptional clause for handling the case of center st
;3 however shall suffice for this fast demonstration!
(and (eq pitch-name 'b) (= octave 4)))))

Eventually the id-less rule itself is defined as follows:

(defrule (note) :treble () (m)

"Draws stem lines on the <correct> side of the note N."

;3 Give the note object N a stem only when it's duration < whole-note

(when (< (duration n) 1)

(let* ((dx .44)
(dy 1.3)
(head-top (top (head mn)))
(head-center (* (height (head n)) .5))
(stem-onset (+ head-top head-center)))
(packsvg! n

1 TId-less rules are defined when we don’t specify any rule-id, which makes the rule applicable to all the
target objects within the rule’s domain, independent of any slot values of the object.

2 E. Gould: Behind Bars, page 14

E. Gould defines the standard stem length to be eqaul to 3.5 staff spaces. | Behind Bars. page 14)

4 Note that this example is meant to serve us in better understanding of the rule-protocol, and is not
a real-case solution for generating stems. Stems shouldn't be added as svg-lines 1o the svg-list of a
note, rather they will be objects in their own right which will be created implicitely by notes. and who's
direction is calculated also based on their context rather than only their octave as the down-stem-p
function above determines!

(-]

3.2 Compe!

In the ren
picture ea:
Note that
it's two m

(render (

1 In a rek

‘Rules 3.2 Composing Sticks 49

(svg:line (if (down-stem-p (spn n))
(+ dx (x (head n)))
(- (right (head n)) dx)
)
(if (down-stem-p (spn n))
(+ stem-onset dy)
stem-onset
)
(if (down-stem-p (spn n))
(+ dx (x (head n)))
(- (right (head n)) dx)
)
(if (down-stem-p (spn n))
(+ stem-onset *octave-spacex)
(- stem-onset *octave-spacex*)
)
:stroke-width (- #staff-line-thickness* 20)
:stroke-linecap "round"
:stroke "black")))))

In the rendering below. I have doubled the width of note spaces just to make the overall
picture easier to recognize. I also have disabled the drawing of all markers and backgrounds’.
Note that the second note B4 should get a stem-up with regard to the stem directions of
it’s two neighbore notes, which we haven not considered in our example.

(render (list (stick :horizontal
:ruleids '(:content)
:chase-visible-p nil
= :marker-visible-p nil
:toplevelp t
:content
(loop
for dur in '(.25 .5 .25 .25
for pitch in '(abd f e a
for oct in '(4 445445
collect (stick :stacked
:content (list (note (cons pitch oct)
:duration dur))))

.5 .5 .26 .61 .5 .25 .25 1)
fgcedec)
45

g
4 5 5 5)

:preproc (preproc x
((typep x 'notehead)
(setf (ruleids x) '(:spn)

(domain x) :treble
(chase-visible-p x) nil
(marker-visible-p x) nil))

((typep x 'note)

(setf

In a release these helper graphics of course are by default set to NIL.

50 Chapter 3 Definition of Rules

; Doubling the width temporarily to ease
;; reading
(width x) (* (width x) 2)
(domain x) :treble
(chase-visible-p x) nil
(marker-visible-p x) nil))
((typep x 'stacked-composing-stick)
(setf (chase-visible-p x) nil
(marker-visible-p x) nil))

N

The code snippet above renders the final example of this writing:

T~

Closure

In this re;
work on S
yet fully §
will come
tasks as 1
makes it
same tim
functiona
Very sam
removed
change ti
and extes
realistic »
The beha
new featu
report. €
which wi
with SN
Common
should m
will be ix
the trans
natural i
generatex
SVG flex
which als
desirable
MEI, Mx
As for
the decis
way of m
I woul

1 Eg. fo
2 The oz
for the

Closure

In this report I outlined the hitherto progress in the development of the SMT engine. The
work on SMT has happened in compliance with a desire for a more flexible and extendible.
vet fully functional music typesetting system compared to extant softwares. Hence, SMT
will come with a full set of basic functionality which will satisfy the music typesetting
tasks as musicians would excpect and know from other music notation systems. What
makes it different from other systems however. is it’s rule definition protocol which at the
same time forms an important part of it’s user-interface. Under the hood, most basic
functionalities for doing typesetting tasks has also been defined and implemented in the
very same protocol which is at user’s disposal. Typesetting rules could then be modified.
removed or new rules can easily be introduced to the system in order to enhance or to
change the behavior of the system possibly down to it’s kernel. Through SMT’s modular
and extendible design, even conceiving new music notation semantics should become a
realistic venture!

The behavior and the syntax of the engine is still in rapid development and change. Many
new features are conceived to be integrated into the system which were not handled in this
report. One of the most important of such aspects for instance is a new syntactic layer
which will serve as the actual surface for SMT. While momentarily the only way to work
with SMT is by loading it’s engine package into the Common Lisp session (and hence in
Common Lisp’s syntax), this new enhanced (particularly in musical terms) syntactic layer
should make the system usable for the non-Common-Lisper as well. This syntactic layer
will be implemented mainly using Common Lisp’s read-macros, which should smoothen
the transition between the engine and the language layers significantly and thus making a
natural integration of Common Lisp code into the SMT language' viable. Also since the
generated output of SMT is SVG, and there where no Common Lisp packages for handling
SVG flexible enough for the work I needed?, I started SMT’s own XML utility system
which already includes SVG, and can be expanded as well in the future to encompass other
desirable XML-related output formats. Adding support for outputting other formats e.g.
MEI, MusicXML etc. is part of the planned future work.

As for the rule protocol, some major design questions are not decided on yet. For instance
the decision about the order in which rules should be applied to objects. Also the definite
way of modifying pre-defined rules is not yet concluded.

I would preferably leave the further documentation of the project to take place over it’s

1 E.g. for doing arbitrary computations in Common Lisp and alike, when needed.
2 The only reasonable choice would be the CL-SVG package which turned out to have many restrictions
for the tasks of the engine.

51

52 Chapter 3 Definition of Rules

documentation page which will be shortly started and updated. The URL of the docu-
mentation page is placed at https://symbolicmusictypesetting.github.io/smtdoc/.
Until then, I would be glad to answer to questions and comments concerning the current
state and further development of the engine at any time via e-mail under the address:
ateymuri63fat/gmail[dot]/com.

Bibliogr

[1] Mark
P

[2] Herbe
(3] Elaim

[4] Kurt
N

Bibliography

[1] Mark McGrain, Music Notation. Theory and Thechnique for Music Notation. Berklee
Press, 1966

(2] Herbert Chlapik, Die Praris des Notengraphikers, Doblinger, 1987
[3] Elaine Gould. Behind Bars, Faber Music, 2011

[4] Kurt Stone, Music Notation in the Twentieth Century, A Practical Guidebook, W. W.
Norton & Company, Inc.. 1980

[5] Jonathan Feist, Contemporary Music Notation. Berklee Press, 2017
(6] Karl Hader, Aus der Werkstatt eines Notenstechers, Waldheim-Eberle-Verlag, 1948

[7] The LilyPond Development Team, Essay on Automated Music Engraving, http://
lilypond.org/

8] Johannes Wolf, Handbuch der Notationskunde, Breitkopf & Hirtel, 1913

[9] Leland Smith, SCORE, A Musician’s Approach to Computer Music, 40th Convention
of the Audio Engineering Society, Los Angeles, 1971

[10] Perry Roland, Ichiro Fujinaga, Andrew Hankinson: The Music Encoding Initiative As
A Document-Encoding Framework, 12th International Society for Music Information
Retrieval Conference (ISMIR 2011)

