
Hochschule für Musik und Darstellende Kunst
Frankfurt am Main

Institut für zeitgenössische Musik

Generative Grammars

Autor: Amir Teymuri

Diese Arbeit ist als Teil des Masterabschlusses im Fach Komposition

entstanden und ist in englischer Sprache verfasst.

March 30, 2019

Contents

1 Outline . 3

2 Generative Grammars . 4

3 Examples . 7

4 In music . 9

5 Two musical dialects . 13

1

2

1 Outline

Generative Grammars are powerful tools for algorithmic music composition. Inspired

from the pioneering works of Noam Chomsky in the late 1950s in the fields of linguistics,

these generative and analytical concepts were soon introduced and adopted into music

as a means for composition and analysis. This paper provides an overview about formal

languages and some of their usages in algorithmic music. In the last section, a formal

language is developed based on a comparison between two pieces which exhibit high

structrual resemblance, namely Spectral Canon by James Tenney and Falling Music by

Frederic Rzewski. Some of the examples in the text are accompanied by codes which

are included in an appendix at the end of this paper. The codes are implemented in

the Hy programming language1, using it’s music notation module Kodou2.

1For more information see the documentation of the language under http://hylang.org/
2Kodou is a versatile software for algorithmic music notation developed and maintained by the

author. More on Kodou under https://kodou.readthedocs.io/

3

http://hylang.org/
https://kodou.readthedocs.io/

2 Generative Grammars

Probably the most controversial claim of Noam Chomsky was that the aquisition of

Language takes place through an innate human faculty. According to Chomsky mak-

ing linguistic communication is as much of an instinctive human act as walking, due

to specific cognitive faculties of our brains3. Linguists call this innate human facil-

ity for learning of languages the Universal Grammar (or UG)[4]. Chomsky’s survey

of language denoted that the study of structures of natural languages and their con-

struction regularities would not only shed light on human languages, but also reveal

some remarkable pecularities about human’s thought pattern and his cognitive fac-

ulty. Chomsky’s pioneering work in the field of linguistics soon was adopted for other

scientific fields such as cognitive science, logic and computer science.

Study of languages begins with the study of their syntax. A syntax can be defined

as a set of principles which regulate the structures of valid outputs producible in a

given language. In human languages syntax is the study of the ways the order of words

in a sentence affects it’s meaning. There are two main contemporary views on the

evolution of syntax in natural languages:

”an incremental view which claims that the evolution of syntax involved multiple

stages between the communication system of our last common ancestor with chim-

panzees and full-blown modern human syntax, and the saltational view which claims

that syntax was the result of just a single evolutionary development” [5].

The theory of syntax is a sub-area of linguistics which investigates formal struc-

tures of compound sentences in any natural or formal languages4. A syntax is thus

a constraint which takes care of conformity of the arrangment of generated sentences

with the formalities of it’s language. This definition indicates that re-applications of

the same rules to the same constituent units would result in a (possibly new and)

grammatically correct product in the language. The ultimate goal of syntactic theory

is to decode and to model the procedures used as part of human’s cognitive abilities

to produce valid sentences. The study of these subconciouse set of procedures in our

brains is a case of particular interest in treating generative grammars in linguistics [4].

Definition of rules as a means for describing and modeling these procedures which

are able of producing valid sentences of a specific language are called generative gram-

3As a secondry object: this assumes a human language as a natural phenomenon, yet it is obvious
that language and it’s rules of construction for conveying diverse forms of information has evolved and
developed through generations and is an artifact of a human instinct and necessity for communication.
A child never exposed to some sort of complex communication community will probably have hard
times learning any natural languages, whereas someone grown up bilingually will most probably find
it easy in his later life to learn other systems of communications and/or languages. Thus contrary to
an instinctive human act like walking, training is a substantial part of natural language acquisition.
Chomsky’s views refer to the necessary and proven preconditions of human brain for acquisition of
natural and formal languages.

4Sentences or more generally expressions are in this context strings of symbols whose formations
comply with certain rules.

4

mars. Informally a generative grammar is a recursive rule system for the definition of

a language that is capable of producing well-formed expressions in a given context[2].

According to Chomsky:

”a grammar is based on a finite number of observed sentences (the linguist’s cor-

pus) and it ‘projects‘ this set to an infinite set of grammatical sentences by stablishing

general ‘laws‘ (grammatical rules) framed in terms of [such] hypothetical constructs as

the particular phonemes, words, phrases and so on, of the language under analysis.”[6]

He defines Language and Grammar as:

”By a language, [...] we shall mean a set (finite or infinite) of sentences, each of

finite length, all constructed from a finite alphabet of symbols. If A is an alphabet, we

shall say that anything formed by concatenating the symbols of A is a string in A. By

a grammar of the language L we mean a device of some sort that produces all of the

strings that are sentences of L and only these.”[6]

Formally a formal grammar is a tuple consisting of four elements: G = {S, P, T,N}
where S = start symbol (or a set of initial states), P = a set of production rules, T =

a set of terminal smybols and N = a set of non-terminal symbols. A valid and well-

formed sentence in a language is a string of symbols in T driven from S by application

of one or more rules in P . In terms of notation, the generation of new sentences5

occures by replacing the symbols on the left-hand side of some rewriting rules in P

with symbols on their right-hand side[2].

A formal language L over an alphabet Σ is a subset of Σ∗6 created by means of a

formal grammar G and thus:

L(G) ⊆ Σ∗

At the heart of any formal language lies a set of syntactic rules that specify the set of all

and only those strings of symbols that constitute legal or well-formed expressions in the

language [1]. An essential critertion regarding sequences within a formal language is

their well-formedness, signifying their correctness in terms of the syntactic rules - this,

however, does not automatically imply that these sentences are semantically accurate,

i.e. meaningful [2] as will be briefly demonstrated in the next section.

For the generation as well as checking for correctness of output expressions of a given

generative grammar, Chomsky introduced four different types of grammars, known as

Chomsky Hierarchy. Each of these four types of grammar generate formal languages

and correspond to a type of automata which can test the membership of any symbol

strings to the language in question. Named with their orders Type-0, Type-1, Type-

2 and Type-3, higher order types of grammars will carry out more restrictions on

5Or more generally sequences
6Kleene star notation. It was first introduced by Stephen Kleene in the context of regular ex-

pressions where it is understood as a certain automata meaning ”zero or more”. In the context of
grammars it refers to the infinite set of all possible finite-length string concatenations Σ∗ over the
symbols of the alphabet Σ including the empty string ε.

5

the applications of their rules which reults in more accurate outputs in terms of the

production rules. On the contrary the higher the order of a type, the lower is it’s

generative capacity, which is defined as it’s ability of producing several expressions and

preventing inaccurate products at the same time. The different types of the Chomsky

Hierarchy are:

• Unrestricted Grammar (Type-0): As it’s name suggests, in this type of grammar

there are no restrictions for the rules of generation. Any number of combinations

of terminal or non-terminal symbols may appear on both sides of it’s produc-

tion rules. This type of grammar produces recursively enumerable languages,

which can be defined informally as a language whose sentences can be checked

for validity by some Turing-machine in (at best) a finite amount of steps7. Due

to this property, Type-0 grammars can exhibit an infinitely high computational

complexity.

• Context-Sensitive Grammar (Type-1): In this type of grammar an arbitrary num-

ber of terminal and/or nonterminal symbols may appear on both sides with the

restriction that the number of symbols on the right-hand side must be equal

or greater than the number of symbols on the left-hand side of the production

rules. Context-sensitivity refers to the possible comprehension of the context

during each replacement procedure. These languages are also known as decidable

languages, i.e. a language-membership test for any given string can be done in

a finite number of steps by it’s appropriate automaton. Context-sensitive pro-

duction rules are of the form αAβ −→ αγβ which means that an occurance

of a nonterminal A can be replaced by another nonterminal γ given that A is

embedded between the terminals and/or nonterminals α and β.

• Context-Free Grammar (Type-2): Here the left-hand side of a rule consists of one

single nonterminal, whereas the right-hand side may consist of zero or an arbitrary

number of terminals and/or nonterminals. Formally this grammer consists of

G = (N,Σ, P, S) where S ∈ N is the start symbol, N is a finite set of nonterminal

symbols, Σ is a finite set of terminal symbols which at the end make up a sentence

in the language and P is a set of production rules. Now each rule p ∈ P is a pair

of two symbols p = (α, β) where α ∈ N and β ∈ (N ∪Σ)∗. Hence the application

of this rule α −→ β replaces some nonterminal symbol with a string of zero or

more terminals and/or nonterminals.

• Regular Grammar (Type-3): The left-hand side of the rules of this grammar con-

sists of a single nonterminal of the alphabet. If it’s right-hand side is a sequence

7Formally: let L be a recursive language, M the Turing-machine that accepts that language and
w some string of symbols, then if w ∈ L, M recognizes it and halts in some final state, otherwise (if
w /∈ L) M halts in no final states and runs forever.

6

of a terminal followed by at most one nonterminal this form of production rule

is refered to as right-linear. If the right-hand side consists of a non-terminal

followed by a terminal it is known as left-linear. An example language of this

grammar is a regular expression. For instance a regular expression of the form

α∗β+γ∗δ can be generated by the right-linear grammar:

S −→ αA

S −→ B

A −→ αA

A −→ αB

B −→ βB

B −→ βC

C −→ γC

C −→ δ

whith N = {A,B,C, S}, Σ = {α, β, γ, δ} and S being the initial symbol. Lan-

guages which can be generated by this type of grammar are called regular lan-

guages [2].

3 Examples

Grammers are tools for analyzing [formal] languages. They are often described as a

set of rules capable of generating well-formed and gramatical sentences within a given

language. In the context of natural language these grammars are often refered to as

phrase structure grammars. It can be defined as ”a finite vocabulary (alphabet) Σ, a

finite set S of initial strings in Σ, and a finite set P of rules of the form X −→ Y ,

where X and Y are strings in Σ.”[6]8

Here is an example[2] of a simplified phrase structure grammar of English:

S −→ NP V P

V P −→ v (NP) (PP)

AP −→ (adv) a

PP −→ p NP

NP −→ (det) (AP) n (PP)

n −→ man girl john

det −→ a the

v −→ met saw

a −→ nice good quick

adv −→ very extremely

p −→ in for to

8X and Y can be terminals, nonterminals or combinations thereof.

7

Implementing these simple rules we could generate random grammatical sentences

which partially come close to correctly articulated english sentences [Programs, 0].

Some of the thus generated sentences are: ’the man met a nice girl ’, ’ man met a

girl ’, ’ very quick man met the extremely quick girl ’, ’ quick man met quick girl ’,

’the man saw ’, ’the nice man to john met the man ’ Even a nonsense like ’a good

girl met a john ’ is still fully acceptabale and well-formed in terms of the grammatical

regularities of the english language. Formal grammars are hence a device for syntactical

work, not a semantical one! They are tools for analysis of structure, not meaning. In

the context of linguistics a sentence is a non-expandable well-ordered set of terminal

symbols produced by the rules of production of a certain grammar9. Formal grammars

can thus be used for creating languages evolving from a basic recursive syntax.

As an example in the following a language for creating simple palindrome sentences

Lpal
10 will be composed. Lpal will have a minimalist alphabet Σ = {P, ε, 0, 1} made up

of two disjoint sets of terminal11 alphabets {ε, 0, 1} and a non-terminal alphabet {P}.
The first three production rules of this mini language are defined as follows:

P −→ ε | 0oe | 1oe

The above basic rules indicate that a null string ε, 0 or 1 are all in Lpal and hence valid

and gramatical palindrome sentences, with oe showing whether the initial sentence is

of odd (oe = 1) or even length (oe = 2).

The next two inductive rules of Lpal are definied as

P −→ 0P0 | 1P1

These two production rules indicate that new palindromic strings can be created by

placing any valid palindrome sentences in between any two similar symbols recursively

to create more complex palindromes.

The third and last rule of Lpal says that nothing else can be in Lpal!. Deducing the

number of recursive steps needed for generating a palindrome sentence from it’s desired

length can be calculated by:

SentenceLength− oe
2

∈ N≥0

Implementing the Lpal [Programs, 4] based on the above definition of the language

allows generation of grammatical palindromic sentences of arbitrary length such as:

9In the context of programming languages it is a syntactically correct formed part of a program.
10A palindrome is a string which reads the same forwards and backwards, e.g. OTTO, 0110 etc.
11In context-free grammers a terminal symbol is a character of the alphabet that appears in the

strings generated by the grammar, whereas a non-terminal symbol is a placeholder for patterns of ter-
minal symbols. Formally the alphabet is designated with Σ, the terminals with T and the nonterminals
with N so that Σ = T ∪ N and T ∩ N = ∅.

8

’10101’, ’0110000110’, ’11011100011000111011’,

’0111010111100110101001010110011110101110’ or

’10110001111111001010101010011111110001101’.

Another example for composing a formal language for basic arithmetic expressions

with the alphabets Σ = {+,−, ∗, /, (,),R, expression} from which only the expression

will provide a productive and non-terminal symbol in the language can be carried out

in the following way:

expression −→ R
expression −→ (expression)

expression −→ expression × expression

expression −→ expression ÷ expression

expression −→ expression + expression

expression −→ expression - expression

With the first rule ending up in a terminal alphabet and hence the only non-

recursive production rule of the language, this simple language depicts a formal gram-

mar of any elementray arithmetic expression12.

4 In music

Chomsky’s important work in the linguistic Syntactic Structures from 1957 was the on-

set for a series of similar attempts in the field of music. Notably Ray Jackendoff’s and

Fred Lehrdahl’s A Generative Theory of Tonal Music from 1983 aims at applications

of more extended generative grammars for the tasks of musical analysis[2]. Also Mark

J. Steedman provided some studies on the usage of generative principles for analyzing

and generating musical structures13.

In the following example a simple formal grammar for real14 musical sequences LR−seq

will be composed. It provides (theoretically) infinite-length sequences of musical pa-

rameter by applying it’s second production rule to the previousely generated member

12This context-free grammar could also be expressed in a more dense form as:

E −→ EopE | (E) | R

op −→ × | ÷ | + | −

To keep this example simple i will not consider the innate ambiguity of this definition, i.e. that hereby
the priority of operations has not been taken into account.

13e.g. A Generative Grammar for Jazz Chord Sequence from 1984 and The Perception of Musical
Rhythm and Metre from 1977

14Inspired from the two alternative forms of theme answers in the exposition of a fuge, i am making
an analogy to the notion of real versus tonal sequences. LR−seq presumes for generation or recognition
of sequences only the context-ignorant data which could be based on pitches, note values, frequencies,
onset times etc., whereas for a tonal sequence further context declarations would be necessary. In this
sense any tonal sequence could be considered as subset of a real sequence LT−seq ⊂ LR−seq.

9

of the sequence. LR−seq will be a recursively enumerable15 language, corresponding in

the Chomsky Hierarchy to the superset of all types, namely Type-0. This has the for-

mal grammar LR−seq(G) = (N,Σ, S, P) with S the start of a sentence, N = {X0, opsk}
set of nonterminals, Σ = ∅ an empty set of terminals and P :

S −→ X0

Xi −→ Oi mod k(Xi)

Oi mod k −→ O(i+1) mod k

set of production rules where Oi mod k is an element of opsk, a k-ary tuple of symbol-

constructing unary16 operations with k ∈ N+17. The use of the modulo operator in

indexing the O implies the innate recursive nature of LR−seq.
18

The operations being applied on each X are responsible for giving the outpus of the

language their unique shapes and are hence a crucial part of the grammar. They are

defined as recursive functions whose output is the next element in LR−seq or formally

∀ O : Oi mod k(Xi) ∈ LR−seq. Using this recursive nature of sequences, we can derive

any arbitrary element of LR−seq by doing:

Xnth =

X0 nth = 0

Onth mod k(Xnth−1) nth > 0

The second production rule of P generates thus all seccessive elements of the sequence:

Xi −→ Xi+1.

An implementation of the grammar of LR−seq and for finding some nth elements in

LR−seq can be found in [Programs, 5].

It is important to mention once again that the coherence and uniformity of a sequence in

LR−seq is ensured through the application of it’s operations on every sequence element.

The operations guarantee that all symbols of a sentence are stringently related to each

other and give the language it’s conformity19.

15Also known as Turing-recognizable, which suggests that for such a sequence there should exist an
algorithm whose output is a list of memebers of the language. If necessary this algorithm can run
forever! Hence there are many counterparts like the set of integers Z etc.

16Of course other numbers of operands and operation depths are conceivable, though here i confine
myself to using unary functions to keep things simple.

17Where k = 0 (no operations provided) the result will be a sequence consisting of the initial symbol.
18The sentences of LR−seq are theoretically infinitely long as part of their nature. I will use the

superscript notation Lm
R−seq to confine the examples to the first m elements of a sequence.

19In this sense a sequence exists only through a relationship between it’s members which is a by-
product of abovementioned operations, e.g. (Banana, Toothbrush, Lamp, Boeing) is not a sequence
since no evident relationship can be established between it’s components, whereas (A red lamp, A
turned-on lamp, A broken lamp) with a 3-ary operations tuple ops3 = (O0 = paintred(object), O1 =
turnon(object), O2 = break(object)) is! So LR−seq should be closed under the collection of it’s oper-
ators in opsk ∈ N . It means that for every element in the sequence there should exist at least one

10

Another property of this language is that LR−seq with concatenation is a monoid, i.e. for

all valid sentences in the language also their concatenations will result in a grammatical

sentence of the language:

∀ seq ∈ LR−seq : seq0 + seq1 + ... ∈ LR−seq

This is a given property by the author to put an emphasis on the structures of sequences

and relations of their constitutes, and to legitimate observations on micro-levels of more

complex constructs for recognizing well-formed20 sequences.

For instance the concatenation of the following three sequences:

(1) L5
R−seq(G) = {N = {60, (λx.x+ 7, λx.x− 2)}}

(2) L8
R−seq(G) = {N = {(70, 72, 77), (λt.(t0 + 5, t1 − 2, t2 + 4), λt.(t0 − 4, t1 + 6, t2 − 7))}}

(3) L10
R−seq(G) = {N = 78, (λx.x+ 5, λx.x− 7, λx.x+ 1, λx.x− 8)}

which are equal to:

(1) (60, 67, 65, 72, 70, 77)

(2) ((70, 72, 77), (75, 70, 81), (71, 76, 74), (76, 74, 78),

(72, 80, 71), (77, 78, 75), (73, 84, 68), (78, 82, 72), (74, 88, 65))

(3) (78, 83, 76, 77, 69, 74, 67, 68, 60, 65, 58)

forms also a LR−seq-compliant sequence:

(60, 67, 65, 72, 70, 77, (70, 72, 77), (75, 70, 81), (71, 76, 74), (76, 74, 78), (72, 80, 71),

(77, 78, 75), (73, 84, 68), (78, 82, 72), (74, 88, 65), 78, 83, 76, 77, 69, 74, 67, 68, 60,

65, 58). Interpreting this sequence as a tuple of pitches [Programs, 6] we have:

Such a basic example of LR−seq, a rigid sequential chromatic passage can be found

in Chopin’s Etude Op.10 No. 3 in E major, bars 38 upto 41. These three measures

exhibit an interesting shift in the context of music. In contrast to the exposition and

recapitulation sections of this piece and as part of the rather chromatically stamped

middle section it exhibits a culmination in decentralization of the tonal language of

the piece; a moment where the music seems to be headed nowhere or to an eternity

as it proceeds in a pure recursive manner. This endless moment of music is backed

in it’s intervalic structure with Chopin’s decision of using tritoni in both hands. The

operator which halts for that element:
∀Xi ∈ LR−seq ∃ Oi mod k | Oi mod k(Xi) ∈ LR−seq. Likewise something like the set of prime numbers
P can not be considered as a sequence in this sense since there exist no operators which are capable
of producing the next prime number based on the current one.

20Well-formedness is judged here merely in compliance with LR−seq.

11

grammars for the right-hand and the left-hand parts of this section are shown below.

Here the part A of the right hand represents the building of the micro-sequences which

can be grouped in three notes each (a downward movement of a minor second followed

by an upward jump of a fourth in the course of the first eight notes), whereas part

B builds the macro-sequences being the three repetitions of part A (each time with a

downward minor second transposition):

(Rh-A) L7
R−seq(G) = {N = {(68, 74), (λt.(t0 − 1, t1 − 1), λt.(t0 + 5, t1 + 5))}}

(Rh-B) L3
R−seq(G) = {N = (Rh− A), λT.(λt.(t0 − 1, t1 − 1))}

The left hand is accordingly built by nesting two different LR−seq’s
21:

(Lh-A) L7
R−seq(G) = {N = {(53, 59), (λt.(t0 − 1, t1 − 1))}}

(Lh-B) L3
R−seq(G) = {N = (Lh− A), λT.(λt.(t0 − 1, t1 − 1))}

An implementation of these sequences (using the in [Program, 5] defined function

‘sequence‘) can be found in [Program, 7] which outputs:

In the following example the intervalic structure of the opening theme of Piano

Phase by Steve Reich is expressed as a sequence of temporal onsets and distances. The

12-notes long theme can be composed using solely it’s first five pitches 64, 66, 71, 73

and 7422. It can be noticed that the infinite character of this theme is realized through

repetitive and ordered onset times of each of these five notes. Here the rhythm of each

single tone is a LR−seq. The ops1 contains the operator:

O(oab) 7→ oab + (b+ 1)× da

where b ∈ N+ is the index of the current repetition, a ∈ N+ is the index of the pitch

starting at it’s initial onset time oab and d ∈ R is the distance between two repetitions

of the pitch. Note that since ops has only a single operator, the application of O on

the last generated symbol of the sequence can also be notated by the lambda notation

λo.o+ d. The grammars for each of the five pitches can thus be formulated as follows:

(64) LR−seq(G) = {N = {0, (λx.x+ 1.5)}}
(66) LR−seq(G) = {N = {0.25, (λx.x+ 1)}}
(71) LR−seq(G) = {N = {0.5, (λx.x+ 1.5)}}
(73) LR−seq(G) = {N = {0.75, (λx.x+ 1)}}
(74) LR−seq(G) = {N = {1, (λx.x+ 1.5)}}

21Although the grammars of part B’s of both hands are virtually identical, i rewrite it for clarity.
22Expressed as MIDI key numbers.

12

The whole theme can be constructed by concatenating the generated sequences as

is demonstrated in [Program, 8]:

5 Two musical dialects

”There are two central problems in the descriptive study of language. One primary

concern of the linguist is to discover simple and ’revealing’ grammars for natural lan-

guages. At the same time, by studying the properties of such successful grammars and

clarifying the basic conceptions that underlie them, he hopes to arrive at a general

theory of linguistic structure.”[6]

Frederic Rzewski’s Falling Music for piano (and amplified sound sculpture ad lib.)

and James Tenney’s Spectral Canon for Conlon Nancarrow (for mechanical piano),

though not inspired from eachother, exhibit highly similar structures. Such a coin-

cidental close analogy between two pieces within the field of algorithmic music23 is

interesting if we keep in mind that the freedom of expression since the break-up of

old music paradigms should have had created a plurality and divercity in musical lan-

guages. In this section i will attempt to compose a formal language based on these

two pieces, which shows to what extent they are structurally interrelated and which

would be capable of predicting a possibly indefinite number of new related phenomena.

Hereby i will focus on the temporal formalities of the pieces and will not consider the

methodes used by each composer for the organization of tonal material, as each piece

has a rather unique approach to this subject.

Spectral Canon was composed between 1972 and 1974. The first realizations were

made by Tenney together with composer Gordon Mumma in Santa Cruz, California,

in 1974. The instrument should be retuned to be capable of producing the first 24

harmonics of A1 which are assigned to 24 voices. Each voice plays 185 repetitions

of it’s assigned pitch while accelerating harmonically, which is followed by another

185 repetitions of the same pitch accompanied by an identical harmonic deceleration.

The durational sequence is identical between all 24 voices, whereas the voices enter

successively (at durational octaves of the first voice)[7]. Falling Music was composed

a little earlier in May 1971. The piano part consists of 36 voices stretched over an

ambitus of three octaves, from B2 to Bb5. Every voice is formed by repetitions of

one of the pitches of the ambitus assigned to it, whereat the distances between each

23Or rather rigid, mechanical music

13

repetition are shortened by one pulse24 unitl a duration of one pulse is reached. At

this point the retrograde of the durations sequence is played and the voice stops.

Both of these pieces are built in an incremental manner, where new instances of the

same layer with some sort of modification will be added to the running music. Also

both pieces have a leading voice which is responsible for triggering those instances in

due time. The fact that in Spectral Canon the time spans between to voice triggers are

filled with other tone repetitions will not affect the overall definition of the language.

Each piece consists of an N -ary tuple of attack indices j = (0, 1, ..., N−1) associated

with some temporal onset identifiers aj ∈ R. Onset units25 will be defined as functions

of these identifiers o : R → R. Voice indices will also be specified on the basis of

[manipulated] attack indices of the leading voice notated in the following as j∗. A

voice will be notated hereafter in the form Vvoice−indexonset−unit
.

Obviously the startup of such a machinery is the triggering of the initial leading

voice:

S → V0o(a0)V0o(a1) ...V0o(aN−1)

The attacks (left-hand side tuple) and their corresponding onset identifiers (right-

hand side tuple) are:

aj =

(a0, a1, ..., a366) = (0, 1, ..., 183, 182, ..., 1, 0) Tenney

(a0, a1, ..., a70) = (0, 1, ..., 35, 34, ..., 1, 0) Rzewski

The onset units for each piece are then computed recursively as follows:

o(aj) =


0 j = 0k × log2(

9+aj−1

8+aj−1
) + o(aj−1) Tenney

36− aj−1 + o(aj−1) Rzewski
j > 0

In the case of Tenney’s onset times above, k is a constant set by him to hold the

duration between first two attacks of each voice equal to 4 seconds[3]. It is equal to:

k × log2(
9

8
) = 4

k = 4× (log2(
9

8
))−1

k ≈ 23.539799

The attack identifiers are carrying information for (1) triggering new voices and

(2) providing the onset units for each voice. Defining the onsets in dependence on the

24An eight-note of tempo 76-80
25I call it units to allow a boarder and appropriate interpretion of whatever it should be. In the

case of Spectral Canon this unit is in seconds, whereas in Falling Music eight-note beats are specified.

14

attack identifiers allows simple rhythmic and formal manipulations of the output pieces.

From the above tuples of attack identifiers it can be easily noticed that both Spectral

Canon and Falling Music exhibit a symmetrical construction plan. The only remaining

step to complete the temporal definition of this formal language is formulating the

production rules for new voice generations. This takes place whenever the leading

voice (the voice with voice− index = 0) arrives at certain positions along it’s roadmap

or satisfy particular conditions. In the case of Spectral Canon each time the number of

hitherto played tones (the very first attack of the leading voice excluded) is a multiple

of 8 and is no bigger than 18426 the next voice will be triggered. In Falling Music this is

done on each of the first 36 tone-repetitions of the leading voice (again not taking j = 0

into account). Being dependent on attack indices we can identify these regeneration

spots whenever the following conditions are satisfied:

c(j) =


j
8
∈ N ∧ j ≤ 184 Tenney

0 < j ≤ 35 Rzewski

upon which we are provided with the adjusted voice indices:

j∗ =


j
8

Tenney

j Rzewski

and thus the reproduction rule

V0o(aj) −→ (Vj∗
o(aj)

, Vj∗
o(aj)+o(a1)

, ..., Vj∗
o(aj)+o(aN−1)

) | ∀j : c(j)

Summarizing these we obtain our final grammar of a temporal canonical language,

also capable of generating both of the above studied pieces:

S −→ (V0o(a0) , V0o(a1) , ..., V0o(aN−1)
)

V0o(aj) −→ (Vj∗
o(aj)

, Vj∗
o(aj)+o(a1)

, ..., Vj∗
o(aj)+o(aN−1)

) | ∀j : c(j)

Considering also the pitches of Falling Music (V0, V1, V2..., V35) = (82, 81, 80, ..., 47)

this grammar would more specifically look like:

26Which makes up a total number of (184÷ 8 = 23) + the leading voice = 24 voices.

15

S −→

(820=0, 821=36, 822=71, 823=105,

824=138, 825=170, 826=201, 827=231,

828=260, 829=288, 8210=315, 8211=341,

8212=366, 8213=390, 8214=413, 8215=435,

8216=456, 8217=476, 8218=495, 8219=513,

8220=530, 8221=546, 8222=561, 8223=575,

8224=588, 8225=600, 8226=611, 8227=621,

8228=630, 8229=638, 8230=645, 8231=651,

8232=656, 8233=660, 8234=663, 8235=665,

8236=666, 8237=668, 8238=671, 8239=675,

8240=680, 8241=686, 8242=693, 8243=701,

8244=710, 8245=720, 8246=731, 8247=743,

8248=756, 8249=770, 8250=785, 8251=801,

8252=818, 8253=836, 8254=855, 8255=875,

8256=896, 8257=918, 8258=941, 8259=965,

8260=990, 8261=1016, 8262=1043, 8263=1071,

8264=1100, 8265=1130, 8266=1161, 8267=1193,

8268=1226, 8269=1260, 8270=1295)

821 −→ (810=36, 811=72, 812=107, 813=141, ..., 8168=1262, 8169=1296, 8170=1331)

822 −→ (800=71, 801=107, 802=142, 803=176, ..., 8068=1297, 8069=1331, 8070=1366)

823 −→ (790=105, 791=141, 792=176, 793=210, ..., 7968=1331, 7969=1365, 7970=1400)

.

.

.

8235 −→ (470=665, 471=701, 472=736, 473=770, ..., 4768=1891, 4769=1925, 4770=1960)

and for Spectral Canon with the frequencies:

(V0, V1, V2..., V23) = (55Hz., 110Hz., 165Hz., ..., 1320Hz.)

the grammar would be:

16

S −→

(55Hz.0=0, 55Hz.1=4.0, 55Hz.2=7.57812192802372, 55Hz.3=10.814926932180002,

55Hz.4=13.769898384723438, 55Hz.5=16.48820861428996, 55Hz.6=19.00497078604862,

55Hz.7=21.348020312747153, 55Hz.8=23.53979676944687, ...,

55Hz.364=201.91093141635625, 55Hz.365=204.8659028688997, 55Hz.366=208.10270787305598)

55Hz. 8
8
−→ (110Hz.0=23.53979676944687, 110Hz.1=27.53979676944687, ..., 110Hz.366=231.64250464250284)

55Hz. 16
8
−→ (165Hz.0=37.309695154170306, 165Hz.1=41.309695154170306, ..., 165Hz.366=245.41240302722628)

55Hz. 24
8
−→ (220Hz.0=47.079593538893754, 220Hz.1=51.079593538893754, ..., 220Hz.366=255.18230141194974)

.

.

.

55Hz. 184
8
−→ (1320Hz.0=107.92908546251081, 1320Hz.1=111.92908546251081, ..., 1320Hz.366=316.0317933355668)

17

References

[1] Mark J. Steedman A Generative Grammar for Jazz Chord Sequences Music Per-

ception, Fall 1984, Vol. 2, No. 1, 52-77

[2] Gerhard Nierhaus Algorithmic Composition, Paradigms of Automated Music Gen-

eration, SpringerWienNeyYork, 2010, 84

[3] Charles de Paiva Santana, Jean Bresson, Moreno Andreatta Modeling and Simu-

lation: The Spectral Canon for Conlon Nancarrow by James Tenney UMR STMS,

IRCAM-CNRS-UPMC 1, place I.Stravinsly 75004 Paris, France

[4] Andrew Carnie Syntax: A Generative Introduction 3rd Edition, 2013, John Wiley

& Sons, Inc.

[5] Brady Clark Syntactic Theory and the Evolution of Syntax Northwestern University

Department of LinguisticsEvanston, IL 60208-4090USA Biolinguistics7: 169197,

2013ISSN 14503417 http://www.biolinguistics.eu

[6] Noam Chomsky Three Models for the description of Language

https://chomsky.info/wp-content/uploads/195609-.pdf

[7] Rob Wannamaker The Spectral Music of James Tenney Contemporary Music Re-

view, February 2008, Pages 105 ff.

18

Programs

For this part the following modules are imported beforehand:
(import [random [randrange :as rnd

random :as r]])
(import [kodou [*]])

0 (Phrase structures)

;;; An implementation of an example from
;;; Nierhaus’ book "Algorithmic Composition", page 86

;;; Join strings with a space
(defn join [&rest items]

(setv items (->> items (.join " ")))
items)

;;; Make occurance of s optional
(defn opt [s &optional [weight 0.5]]

(if (<= (r) weight) s ""))

;;; Phrase structure
(defn ps [unit]

(cond
;; non-terminals
[(= unit "S") (join (ps "NP") (ps "VP"))]
[(= unit "VP") (join (ps "v")

(ps (opt "NP"))
(ps (opt "PP")))]

[(= unit "AP") (join (ps (opt "adv"))
(ps "a"))]

[(= unit "PP") (join (ps "p") (ps "NP"))]
[(= unit "NP") (join (ps (opt "det"))

(ps (opt "AP"))
(ps "n")
(ps (opt "PP")))]

;; terminals
[(= unit "n") (rnd-sel (, "man" "girl" "John"))]
[(= unit "det") (rnd-sel (, "a" "the"))]
[(= unit "v") (rnd-sel (, "met" "saw"))]
[(= unit "a") (rnd-sel (, "nice" "good" "quick"))]
[(= unit "adv") (rnd-sel (, "very" "extremely"))]
[(= unit "p") (rnd-sel (, "in" "for" "to"))]
[(= unit "") ""]))

(ps "S") ;; => ’the man met a nice girl ’
(ps "S") ;; => ’ man met a girl ’
(ps "S") ;; => ’ very quick man met the extremely quick girl ’
(ps "S") ;; => ’ quick man met quick girl ’
(ps "S") ;; => ’the man saw ’
(ps "S") ;; => ’the nice man to john met the man ’

1 (Phrase structures)

Another simplified example of english grammar:

sentence −→ subject verbphrase object

verbphrase −→ adverb verb

object −→ article noun

subject −→ These | Computers | We

adverb −→ never | ε

verb −→ run | are | tell

article −→ the | a | ε

noun −→ university. | world. | cheese. | lie.

19

;;; Choose a random element of seq
(defn rnd-choose [seq]

(get seq (rnd (len seq))))
(defn subject []

(rnd-choose (, "These" "Computers" "We")))
(defn determiner []

(rnd-choose (, "the" "a" "")))
(defn noun []

(rnd-choose (, "university." "world." "cheese." "lie.")))
(defn adverb []

(rnd-choose (, "never" "")))
(defn verb []

(rnd-choose (, "run" "are" "tell")))

;;; Generate a sentence
(defn sentence []

(-> " "
(.join [(subject)

(adverb)
(verb)
(determiner)
(noun)])))

Some of the thus generated sentences are:

’We run the university.’, ’We never are the world.’, ’Computers never run the

world.’, ’Computers never are a world.’, ’Computers are a world.’, ’Computers run the

university.’, ’We never tell the university.’, ’These never tell the world.’, ’These run a

university.’

2 (Phrase structure)

;;; Recursive definition of the English Phrase Structure from Chomsky’s
;;; "Three models ..." pages 117 & 118, examples 20, 21, 23 & 24
(defn make [what

&optional
[nps ["the man" "the book"]]
[verbs ["took"]]]

(cond [(= what "NP") (rnd-choose nps)]
[(= what "VP") (+ (make "Verb" nps verbs)

" "
(make "NP" nps verbs))]

[(= what "Verb") (rnd-choose verbs)]
[(= what "Sentence") (+ "#" (make "NP" nps verbs)

" "
(make "VP" nps verbs) "#")]))

(make "Sentence") ;; => ’#the man took the book#’
(make "Sentence"

["they" "planes" "flying planes"]
["are flying" "are"]) ;; => ’#they are flying planes#’

20

3 (Phrase structure)

;;; Join strings with a space
(defn join [&rest items]

(setv items (->> items (.join " ")))
items)

;;; Phrase Structure
(defn ps [unit]

(cond
[(= unit "S") (join (ps "NP") (ps "VP"))]
[(= unit "NP") (join (ps "a") (ps (rnd-sel (, "n" "NP"))))]
[(= unit "VP") (join (ps "v") (ps "adv"))]
[(= unit "a") (rnd-sel (, "colorless" "green"))]
[(= unit "n") "ideas"]
[(= unit "v") "sleep"]
[(= unit "adv") "furiously"]))

(ps "S") ;; => ’colorless green ideas sleep furiously’
(ps "S") ;; => ’colorless ideas sleep furiously’
(ps "S") ;; => ’green colorless ideas sleep furiously’
(ps "S") ;; => ’green green green ideas sleep furiously’
(ps "S") ;; => ’green ideas sleep furiously’
(ps "S") ;; => ’colorless green ideas sleep furiously’

4 (Palindrome)

;;; Deduce the number of required steps
(defn count-steps [init-size sentence-size]

(// (- sentence-size init-size) 2))

;;; Expand the existing palindromic sentence
(defn expand-sentence [sentence]

(setv word (rnd-choose ["0" "1"]))
(+ word sentence word))

;;; Generate a palindromic sentence recursively
(defn sentence [size]

(setv init-size (if (zero? (% size 2)) 2 1))
(setv steps (count-steps init-size size))
(setv init-sentence (* (rnd-choose ["0" "1"]) init-size))
(loop [[s init-sentence]

[i steps]]
(if (zero? i)

s
(recur (expand-sentence s) (- i 1)))))

(sentence 5) ;; => ’10101’
(sentence 10) ;; => ’0110000110’
(sentence 20) ;; => ’11011100011000111011’
(sentence 40) ;; => ’0111010111100110101001010110011110101110’
(sentence 41) ;; => ’10110001111111001010101010011111110001101’

21

5 (L(R-seq))

;;; Grammar of L(R-seq)
(defn sequence [X0 ops m]

(setv k (len ops))
(setv m (if (zero? k) 0 m))
(loop [[i 0]

[seq [X0]]]
(if (= i m)

seq
(recur (+ i 1)

(+ seq [((get ops (% i k)) (last seq))])))))

;;; Searching the nth symbol of some sentence of L(R-seq)
(defn seq-elem [X0 ops nth_]

(setv L (len ops))
(loop [[i 0]

[curr X0]]
(if (= i nth_)

curr
(recur (+ i 1)

((get ops (% i L)) curr)))))

(sequence "-" (, (fn [x] (+ x ">"))) 3) ;; => [’-’, ’->’, ’->>’, ’->>>’]
(sequence "-" () 3) ;; => [’-’]
(sequence "-" (, (fn [x] (+ x ">"))) 0) ;; => [’-’]
(seq-elem "-" (, (fn [x] (+ x ">"))) 3) ;; => ’->>>’
(sequence 0 (, (fn [x] (+ x 1.5))) 9)
;;; => [0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5, 12.0, 13.5]
(seq-elem 0 (, (fn [x] (+ x 1.5))) 9) ;; => 13.5

6 (Sequence Concatenation)

;;; Concatenation of three sequences results
;;; in a new valid sequence.
(kodou

(Part
{"notes"

(+ (sequence 60
(, (fn [x] (+ x 7))

(fn [x] (- x 2)))
5)

(sequence [70 72 77]
(, (fn [L] [(+ (get L 0) 5)

(- (get L 1) 2)
(+ (get L 2) 4)])

(fn [L] [(- (get L 0) 4)
(+ (get L 1) 6)
(- (get L 2) 7)])) 8)

(sequence 78 (, (fn [x] (+ x 5))
(fn [x] (- x 7))
(fn [x] (+ x 1))
(fn [x] (- x 8)))

10))
"beats" (range 26)}))

22

7 (Chopin)

(kodou
(Part

{"notes"
[(reduce +

(sequence
(sequence [68 74]

(, (fn [chord] (lfor n chord (- n 1)))
(fn [chord] (lfor n chord (+ n 5))))

7)
(, (fn [phrase] (lfor chord phrase (lfor n chord (- n 1)))))
3))

(reduce +
(sequence

(sequence [53 59]
(, (fn [chord] (lfor n chord (- n 1))))
7)

(, (fn [phrase] (lfor chord phrase (lfor n chord (- n 1)))))
3))]

"beats" (lfor _ (range 2)
(sequence 0.25

(, (fn [beat] (+ beat 0.25)))
23))}

{"staff" {"n" 2 "bind" "piano"}
"clef" {1 {0 "bass"}}
"timesig" {0 (, 2 4)}}))

8 (Reich)

(kodou
(Part

{"notes"
(reduce +

(lfor pitch (, 64 66 71 73 74)
(sequence pitch

(, (fn [x] x))
7)))

"beats" (reduce +
(lfor onset-dist [[0 1.5]

[.25 1]
[.5 1.5]
[.75 1]
[1 1.5]]

(sequence (get onset-dist 0)
(, (fn [x] (+ x (get onset-dist 1))))
7)))}

{"timesig" {0 (, 3 4)}}))

23

	Outline
	Generative Grammars
	Examples
	In music
	Two musical dialects

